Document Type : Review Article

Authors

1 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P. O. Box: 3353-5111, Tehran, Iran.

2 Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box: 3353-5111, Tehran, Iran.

Abstract

The current review purpose is to present a general overview of different experimental design methods that are applied to investigate the effect of key factors on dark fermentation and are efficient in predicting the experimental data for biological hydrogen production. The methods of two levels full and fractional factorials, Plackett–Burman, and Taguchi were employed for screening the most important factors in dark fermentation. The techniques of central composite, Box–Behnken, Taguchi, and one factor at a time for optimization of the dark fermentation were extensively used. Papers on the three levels full and fractional factorials, artificial neural network coupled with genetic algorithm, simplex, and D-optimal for the optimization of the dark fermentation are limited, and no paper on the Dohlert design has been reported to date. The artificial neural network coupled with genetic algorithm is a more suitable method than the RSM technique for the optimization of dark fermentation. Literature shows that the optimization of critical factors plays a significant role in dark fermentation and is useful to improve the hydrogen production rate and hydrogen yield.

Keywords

Main Subjects

1.     Das, D.D., Khanna, N. and Nag, C., Biohydrogen production: Fundamentals and technology advances, First edition, CRC Press, (2014).
2.     Boshagh, F., Rostami, K. and Moazami, N., "Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube", International Journal of Hydrogen Energy, Vol. 44, (2019), 14395-14405. (DOI: 10.1016/j.ijhydene.2018.11.199).
3.     Boshagh, F., Rostami, K. and Moazami, N., "Immobilization of Enterobacter aerogenes on carbon fiber and activated carbon to study hydrogen production enhancement", Biochemical Engineering Journal, Vol. 144, (2019), 64-72. (DOI: 10.1016/j.bej.2019.01.014).
4.     Jang, K.-W., Kim, D., Kim, S. and Shin, H.-S., "Bioreactor design for continuous dark fermentative hydrogen production", Bioresource Technology, Vol. 102, (2011), 8612-8620.
5.     Show, K., Lee, D. and Chang, J., "Bioreactor and process design for biohydrogen production", Bioresource Technology, Vol. 102, (2011), 8524-8533. (DOI: 10.1016/j.biortech.2011.04.055).
6.     Montgomery, D.C., Design and analysis of experiments, Eighth edition, John Wiley & Sons Inc., (2013).
7.     Cavazzuti, M., Design of experiments, Optimization methods: From theory to design scientific and technological aspects in mechanics, Springer Science & Business Media, (2012), 13-42.
8.     Tanco, M., Viles, E. and Pozueta, L., Comparing different approaches for design of experiments (DoE), Advances in electrical engineering and computational science, Lecture notes in electrical engineering, Springer Science & Business Media, 611-621.
9.     Oehlert, G.W., A first course in design and analysis of experiments, 1st edition, (2010).
10.   Jiju, A., Design of experiments for engineers and scientists, Elsevier Science & Technology Books, (2003).
11.   Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikström, C. and Wold, S., Design of experiments, principles and applications,. 3rd edition, Umetrics AB, (2008).
12.   Callao, M.P., "Multivariate experimental design in environmental analysis", TrAC-Trends in Analytical Chemistry, Vol. 62, (2014), 86-92. (DOI: 10.1016/j.trac.2014.07.009).
13.   Wang, J. and Yin, Y., Biohydrogen production from organic wastes, Singapore: Springer Singapore, (2017).
14.   Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar L.S. and Escaleira L.A., "Response surface methodology (RSM) as a tool for optimization in analytical chemistry", Talanta, Vol. 76, (2008), 965-977. (DOI: 10.1016/j.talanta.2008.05.019)
15.   Candioti, L.V., De Zan, M.M., Camara, M.S. and Goicoechea, H.C., "Experimental design and multiple response optimization, Using the desirability function in analytical methods development", Talanta, Vol. 124, (2014), 123-38. (DOI: 10.1016/j.talanta.2014.01.034).
16.   Antony, J., "Taguchi or classical design of experiments: A perspective from a practitioner", Sensor Review, Vol. 26, No. 3, (2006), 227-230.
17.   Shirakura, T., "Fractional factorial designs of two and three levels", Discrete Mathematics, Vol. 116, (1993), 99-135.
18.   Ryan, T.P., Modern experimental design, John Wiley & Sons Inc., Hoboken, New Jersey, (2007).
19.   Davim, J.P., Design of experiments in production engineering, Switzerland: Springer International Publishing, (2016).
20.   Rasdi, Z., Aini, N., Rahman, A., Abd-aziz, S., Lai-yee, P., Zulkhairi, M., Yusoff, M., Mei-ling, C. and Hassan, M.A., "Statistical optimization of biohydrogen production from palm oil mill effluent by natural microflora", The Open Biotechnology Journal, Vol. 3, (2009), 79-86. (DOI: 10.2174/1874070700903010079).
21.   Ismail, F., Abd-Aziz, S., MeiLing, C. and Hassan, M.A., "Statistical optimization of biohydrogen production using food waste under thermophilic conditions", Open Renewable Energy Journal, Vol. 2, (2009), 124-131. (DOI: 10.2174/1876387100902010124).
22.   Plackett, R.L. and Burman, J.P., "The design of multifactorial experiments", Biometrika, Vol. 33, (1946), 305-325.
23.   Nath, K. and Das, D., "Modeling and optimization of fermentative hydrogen production", Bioresource Technology, Vol. 102, (2011), 8569-8581. (DOI: 10.1016/j.biortech.2011.03.108).
24.   Box, G.E., Hunter, W.G. and Hunter, J.S., Statistics for experimenters design, innovation, and discover, 2nd edition, (1978).
25.   Wang, J. and Wan, W., "Experimental design methods for fermentative hydrogen production: A review", International Journal of Hydrogen Energy, Vol. 34, (2009), 235-244. (DOI: 10.1016/j.ijhydene. 2008.10.008).
26.   Kennedy M. and Krouse, D., "Strategies for improving fermentation medium performance : A review", Journal of Industrial Microbiology & Biotechnology, Vol. 23, (1999), 456-475. (DOI: 10.1038/ sj.jim.2900755).
27.   Costa, J.B., Rossi, D.M., De Souza, E.A., Samios, D., Bregalda, F., Do Carmo Ruaro Peralba, M., Flores, S.H., and Ayub, M.A.Z., "The optimization of biohydrogen production by bacteria using residual glycerol from biodiesel synthesis", Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, Vol. 46, (2011), 1461-1468. (DOI: 10.1080/ 10934529.2011.609036).
28.   Jiang, D., Fang, Z., Chin, S.X., Tian, X.F. and Su, T.C., "Biohydrogen production from hydrolysates of selected tropical biomass wastes with Clostridium Butyricum", Scientific Reports, Vol. 6, (2016), 1-11. (DOI: 10.1038/srep27205).
29.   Varrone, C., Giussani, B., Izzo, G., Massini, G., Marone, A., Signorini, A. and Wang, A., "Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture", International Journal of Hydrogen Energy, Vol. 37, (2012), 16479-16488. (DOI: 10.1016/j.ijhydene.2012.02.106).
30.   Guo, W., Ren, N., Wang, X., Xiang, W., Ding, J., You, Y. and Liu, B.-F., "Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology", Bioresource Technology, Vol. 100, (2009), 1192-1196. (DOI: 10.1016/j.biortech.2008.07.070).
31.   Boonsayompoo, O. and Reungsang, A., "Thermophilic biohydrogen production from the enzymatic hydrolysate of cellulose fraction of sweet sorghum bagasse by Thermoanaerobacterium thermosaccharolyticum KKU19: Optimization of media composition", International Journal of Hydrogen Energy, Vol. 38, (2013), 15777-15786. (DOI: 10.1016/j.ijhydene.2013.04.129).
32.   Pan, C.M., Fan, Y.T., Xing, Y., Hou, H.W. and Zhang, M.L., "Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2", Bioresource Technology, Vol. 99, (2008), 3146-3154. (DOI: 10.1016/j.biortech.2007.05.055).
33.   Karthic, P., Joseph, S. and Arun, N., "Optimization of process variables for biohydrogen production from glucose by Enterobacter aerogenes", Open Access Scientific Reports, Vol. 1, (2012), 142. (DOI: 10.4172/scientificreports.1).
34.   Karthic, P., Joseph, S., Arun, N. and Kumaravel, S., "Optimization of biohydrogen production by Enterobacter species using artificial neural network and response surface methodology", Renewable and Sustainable Energy, Vol. 5, (2013), 1-13. (DOI: 10.1063/1.4803746).
35.   Saraphirom, P. and Reungsang, A., "Optimization of biohydrogen production from sweet sorghum syrup using statistical methods", International Journal of Hydrogen Energy, Vol. 35, (2010), 13435-13444. (DOI: 10.1016/j.ijhydene.2009.11.122).
36.   Puad, N.I.M., Mamat, N.A. and Azmi, A.S., "Screening of various parameters of Enterobacter aerogenes batch culture for biohydrogen production", International Proceedings of Chemical, Biological and Environmental Engineering, Vol. 93, (2016), 55-61. (DOI: 10.7763/IPCBEE. 2016. V93. 8).
37.   Bakonyi, P., Nemestothy, N., Lovitusz, E. and Belafi-Bako, K., "Application of Plackett - Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE)", International Journal of Hydrogen Energy, Vol. 36, (2011), 13949-13954. (DOI: 10.1016/j.ijhydene.2011.03.062).
38.   Reungsang, A. and Sreela-or, C., "Bio-hydrogen production from pineapple waste extract by anaerobic mixed cultures", Energies, Vol. 6, (2013), 2175-2190. (DOI: 10.3390/en6042175).
39.   Wang, K.S., Chen, J.H., Huang, Y.H. and Huang, S.L., "Integrated Taguchi method and response surface methodology to confirm hydrogen production by anaerobic fermentation of cow manure", International Journal of Hydrogen Energy, Vol. 38, (2013), 45-53. (DOI: 10.1016/j.ijhydene.2012.03.155)
40.   Box, G.E.P. and Wilson, K.B., On the experimental attainment of optimum conditions, Breakthroughs in statistics, Springer, New York, N.Y., (1992), 270-310.
41.   Lay, J., "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen", Biotechnology and Bioengineering, Vol. 68, (2000), 269-278. (DOI: 10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T).
42.   Long, C., Cui, J., Liu, Z., Liu, Y., Long, M. and Hu, Z., "Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1", International Journal of Hydrogen Energy, Vol. 35, (2010), 6657-6664. (DOI: 10.1016/j.ijhydene. 2010.04.094).
43.   Wahid, Z. and Nadir, N., "Improvement of one factor at a time through design of experiments", World Applied Sciences Journal, Vol. 21, (2013), 56-61. (DOI: 10.5829/idosi.wasj.2013.21.mae.99919).
44.   Taylor, P. and Czitrom, V., "One- factor- at- a- time versus designed experiments", The American Statistician, Vol. 53, (2013), 16-131. (DOI: 10.1080/00031305.1999.10474445).
45.   Satar, I., Ghasemi, M., Aljlil, S.A., Nor, W., Wan, R., Abdalla, A.M., Alam, J., Daud, W.R.W., Yarmo, M.A. and Akbarzadeh, O., "Production of hydrogen by Enterobacter aerogenes in an immobilized cell reactor", International Journal of Hydrogen Energy, Vol. 42, (2017), 9024-9030. (DOI: 10.1016/j.ijhydene.2016.04.150).
46.   Liu, G.G.Z. and Shen, J.J.Q., "Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria", Journal of Bioscience and Bioengineering, Vol. 98, (2004), 251-256. (DOI: 10.1263/jbb.98.251).
47.   Gundogdu, T.K., Deniz, I., Caliskan, G., Sahin, E.S. and Azbar, N., "Experimental design methods for bioengineering applications", Critical Reviews in Biotechnology, Vol. 36, (2016), 368-388. (DOI: 10.3109/07388551.2014.973014).
48.   Roy, R., A primer on the Taguchi method, 2nd edition, Society of Manufacturing Engineers, (2010).
49.   Roy, S., Vishnuvardhan, M. and Das, D., "Improvement of hydrogen production by newly isolated Thermoanaerobacterium thermosaccharolyticum IIT BT-ST1", International Journal of Hydrogen Energy, Vol. 39, (2014), 7541-7552. (DOI: 10.1016/j.ijhydene.2013.06.128).
50.   Kumari, S. and Das, D., "Improvement of biohydrogen production using acidogenic culture", International Journal of Hydrogen Energy, Vol. 42, (2017), 4083-4094. (DOI: 10.1016/j.ijhydene.2016.09.021).
51.   Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M., Response surface methodology, process and product optimization using designed experiments, 3rd edition, New York, Wiley, (2009).
52.   Ferreira, S.L.C., Bruns, R.E., da Silva, E.G.P., dos Santos, W.N.L., Quintella, C.M., David, J.M., de Andrade, J.B., Breitkreitz, M.C., Fontes Jardim, I.C.S. and Barros Neto, B., "Statistical designs and response surface techniques for the optimization of chromatographic systems", Journal of Chromatography A, Vol. 1158, (2007), 2-14. (DOI: 10.1016/j.chroma.2007.03.051).
53.   Ebrahimi-Najafabadi, H., Leardi, R. and Jalali-Heravi, M., "Experimental design in analytical chemistry, part I: Theory", Journal of AOAC International, Vol. 97, (2014), 3-11. (DOI: 10.5740/ jaoacint.SGEEbrahimi1).
54.   Shanmugam, S.R., Rao, S., Lalman, J.A. and Heath, D.D., "Using a statistical approach to model hydrogen production from a steam exploded corn stalk hydrolysate fed to mixed anaerobic cultures in an ASBR", International Journal of Hydrogen Energy, Vol. 39, (2014), 10003-10015. (DOI: 10.1016/j.ijhydene.2014.04.115).
55.   Chaganti, S.R., Kim, D., Lalman, J.A. and Ayele, W., "Statistical optimization of factors affecting biohydrogen production from xylose fermentation using inhibited mixed anaerobic cultures", International Journal of Hydrogen Energy, Vol. 37, (2012), 11710-11718. (DOI: 10.1016/j.ijhydene.2012.05.036).
56.   Bakonyi, P., Nemestothy, N. and Belafi-Bako, K., "Comparative study of various E. coli strains for biohydrogen production applying response surface methodology", The Scientific World Jornal, Vol. 2012, (2012). (DOI: 10.1100/2012/819793).
57.   Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandao, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S. and dos Santos, W.N.L., "Box-Behnken design: An alternative for the optimization of analytical methods", Analytica Chimica Acta, Vol. 597, (2007), 179-186. (DOI: 10.1016/j.aca.2007.07.011).
58.   Box, G.E.P. and Behnken, D.W., "Some new three level designs for the study of quantitative variables", Technometrics, Vol. 2, (1960), 455-475.
59.   Bruns, R.E., Scarminio, I.S. and de Barros, N.B., Statistical design- chemometrics, Vol. 25, Elsevier, (2006).
60.   Pendyala, B., Rao, S., Lalman, J.A., Heath, D.D., Shanmugam, S.R. and Veeravalli, S.S., "Using a food and paper-cardboard waste blend as a novel feedstock for hydrogen production : Influence of key process parameters on microbial diversity", International Journal of Hydrogen Energy, Vol. 38, (2013), 6357-6367. (DOI: 10.1016/j.ijhydene. 2013.03.003).
61.   Sharif, K.M., Rahman, M.M., Azmir, J., Mohamed, A., Jahurul, M.H.A., Sahena, F. and Zaidul, I.S.M., "Experimental design of supercritical fluid extraction - A review", Journal of Food Engineering, Vol. 124, (2014), 105-116. (DOI: 10.1016/ j.jfoodeng.2013.10.003).
62.   Asghar, A., Abdul Raman, A.A. and Daud, W.M.A.W., "A comparison of central composite design and Taguchi method for optimizing fenton process", The Scientific World Journal, Vol. 2014, (2014), 869120. (DOI: 10.1155/2014/869120).
63.   Won, S.G., Baldwin, S.A., Lau, A.K. and Rezadehbashi, M., "Optimal operational conditions for biohydrogen production from sugar refinery wastewater in an ASBR", International Journal of Hydrogen Energy, Vol. 38, (2013), 13895-13906. (DOI: 10.1016/j.ijhydene.2013.08.071).
64.   Sun, Q., Xiao, W., Xi, D., Shi, J., Yan, X. and Zhou, Z., "Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides", International Journal of Hydrogen Energy, Vol. 35, (2010), 4076-4084. (DOI: 10.1016/j.ijhydene.2010.01.145).
65.   Zhao, B., Yue, Z., Zhao, Q., Mu, Y., Yu, H., Harada, H. and Li, Y.Y., "Optimization of hydrogen production in a granule-based UASB reactor", International Journal of Hydrogen Energy, Vol. 33, (2008), 2454-2461. (DOI: 10.1016/j.ijhydene.2008.03.008).
66.   Doehlert, D.H., "Uniform shell designs", Applied Statistics, Vol. 19, (1970), 231.
67.   Hibbert, D.B., "Experimental design in chromatography : A tutorial review", Journal of Chromatography B, Vol. 910, (2012), 2-13. (DOI: 10.1016/j.jchromb.2012.01.020).
68.   Rady, E.A., Abd El-Monsef, M.M.E. and Seyam, M.M., "Relationships among several optimality criteria", Interstat Journals, Vol. 247, (2009), 1-11.
69.   Allen-Zhu, Z., Li, Y., Singh, A. and Wang, Y., "Near-optimal discrete optimization for experimental design: A regret minimization approach", ArXiv Preprint ArXiv: 1711.05174, (2017).
70.   Mousavi, L., Tamiji, Z. and Khoshayand, M.R., "Applications and opportunities of experimental design for the dispersive liquid-liquid microextraction method - A review", Talanta, Vol. 190, (2018), 335-356. (DOI: 10.1016/j.talanta.2018.08.002 TAL18923).
71.   D-Optimal designs, (1992), 1-23.
72.   Wong, W.K., "G-optimal designs for multi-factor experiments with heteroscedastic errors", Journal of Statistical Planning and Inference, Vol. 40, (1994), 127-133. (DOI: 10.1016/0378-3758(94)90146-5).
73.   Liu, Q., Zhang, X., Zhou, Y., Zhao, A., Chen, S., Qian, G. and Ping, Z., "Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement", Bioresour Technology, Vol. 102, (2011), 8661-8668. (DOI: 10.1016/j.biortech.2011.03.002).
74.   Veeravalli, S.S., Chaganti, S.R., Lalman, J.A. and Heath, D.D., "Optimizing hydrogen production from a switchgrass steam exploded liquor using a mixed anaerobic culture in an upflow anaerobic sludge blanket reactor", International Journal of Hydrogen Energy, Vol. 39, (2014), 9994-10002. (DOI: 10.1016/j.ijhydene.2013.12.057).
75.   Nelder, J.A. and Mead, R., "A Simplex method for function minimization", The Computer Journal, Vol. 7, (1965), 308-313. (DOI: 10.1093/comjnl/7.4.308).
76.   Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E., "Convergence properties of the Nelder-Mead simplex method in low dimensions", SIAM Journal on Optimization, Vol. 9, (1998), 112-147. (DOI: 10.1137/S1052623496303470).
77.   Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nystrom, A., Pettersen, J. and Bergman, R., "Experimental design and optimization", Chemometrics and Intelligent Laboratory Systems, Vol. 42, (1998), 3-40. (DOI: 10.1007/978-3-540-49148-4-3).
78.   Bondari, K., "Mixture experiments and their applications in agricultural research", Proceedings of The 30th Annual SAS Users Group International Conference (SUGI 30), Statistics and Data Analysis, (2005), 1-8.
79.   Prakasham, R.S., Sathish, T., Brahmaiah, P., Subba, C., Rao, R.S. and Hobbs, P.J., "Biohydrogen production from renewable agri- waste blend : Optimization using mixer design", International Journal of Hydrogen Energy, Vol. 34, (2009), 6143-6148. (DOI: 10.1016/j.ijhydene.2009.06.016).
80.   Sekoai, P.T. and Kana, E.B.G., "A two-stage modelling and optimization of biohydrogen production from a mixture of agro-municipal waste", International Journal of Hydrogen Energy, Vol. 38, (2013), 8657-8663. (DOI: 10.1016/j.ijhydene.2013.04.130).
81.   Marone, A., Varrone, C., Fiocchetti, F., Giussani, B., Izzo, G., Mentuccia, L., Rosa, S. and Signorini, A., "Optimization of substrate composition for biohydrogen production from buffalo slurry co-fermented with cheese whey and crude glycerol, using microbial mixed culture", International Journal of Hydrogen Energy, Vol. 40, (2015), 209-218. (DOI: 10.1016/j.ijhydene.2014.11.008).
82.   Shapiro, A.F., "Capital market applications of neural networks, fuzzy logic and genetic algorithms", Proceedings of The 13th International AFIR Colloquium, Vol. 1, (2003), 493-514.
83.   Nagata, Y. and Chu, K.H., "Optimization of a fermentation medium using neural networks and genetic algorithms", Biotechnology Letters, Vol. 25, (2003), 1837-1842. (DOI: 10.1023/A:1026225526558).
84.   Tahmasebi, P. and Hezarkhani, A., "A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation", Computers and Geosciences, Vol. 42, (2012), 18-27. (DOI: 10.1016/ j.cageo.2012.02.004).
85.   Fan, M., Hu, J., Cao, R., Ruan, W. and Wei, X., "A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence", Chemosphere, Vol. 200, (2018), 330-343. (DOI: 10.1016/j.chemosphere.2018.02.111).
86.   Holland, J.H., Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, Vol. 69, MIT Press, (1992).
87.   Nasr, N., Hafez, H., El Naggar, M.H. and Nakhla G., "Application of artificial neural networks for modeling of biohydrogen production", International Journal of Hydrogen Energy,Vol. 38, (2013), 3189-3195. (DOI: 10.1016/j.ijhydene.2012.12.109).
88.   Desai, K.M., Survase, S.A., Saudagar, P.S., Lele, S.S. and Singhal, R.S., "Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan", Biocatalysis-from Discovery to Application, Vol. 41, (2008), 266-273. (DOI: 10.1016/ j.bej.2008.05.009).
89.   Bas, D. and Boyac, I.H., "Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction", Journal of Food Engineering, Vol. 78, (2007), 846-854. (DOI: 10.1016/ j.jfoodeng.2005.11.025).
90.   Lou, W. and Nakai, S., "Application of artificial neural networks for predicting the thermal inactivation of bacteria: A combined effect of temperature, pH and water activity", Food Research International, Vol. 34, (2001), 573-579. (DOI: 10.1016/S0963-9969(01)00074-6).
91.   Prakasham, R.S., Sathish, T. and Brahmaiah, P., "Imperative role of neural networks coupled genetic algorithm on optimization of biohydrogen yield", International Journal of Hydrogen Energy, Vol. 36, (2011), 4332-4339. (DOI: 10.1016/j.ijhydene.2011.01.031).
92.   Lin, C.Y. and Lay, C.H., "Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora", International Journal of Hydrogen Energy, Vol. 29, (2004), 275-281. (DOI: 10.1016/j.ijhydene.2003.07.002).
93.   Lin, C.Y. and Lay, C.H., "A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora", International Journal of Hydrogen Energy, Vol. 30, (2005), 285-292. (DOI: 10.1016/j.ijhydene.2004.03.002).
94.   Hosseinkhani, B., Hennebel, T. and Boon, N., "Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments", New Biotechnology, Vol. 31, (2014), 445-450. (DOI: 10.1016/j.nbt.2014.04.005).
95.   Hsia, S. and Chou, Y., "Optimization of biohydrogen production with biomechatronics optimization of biohydrogen production with biomechatronics", Journal of Nanomaterials, Vol. 2014, (2014), 1-11. (DOI: /10.1155/2014/721267).
96.   Prakasham, R.S., Sathish, T. and Brahmaiah, P., "Biohydrogen production process optimization using anaerobic mixed consortia: A prelude study for use of agro-industrial material hydrolysate as substrate", Bioresource Technology, Vol. 101, (2010), 5708-5711. (DOI: 10.1016/j.biortech.2010.01.145).
97.   Roy, S., Vishnuvardhan, M. and Das, D., "Continuous thermophilic biohydrogen production in packed bed reactor", Applied Energy,Vol. 136, (2014), 51-58. (DOI: 10.1016/j.apenergy.2014.08.031).
98.   Mohan, S.V., Raghavulu, S.V., Mohanakrishna, G., Srikanth, S. and Sarma, P.N., "Optimization and evaluation of fermentative hydrogen production and wastewater treatment processes using data enveloping analysis (DEA) and Taguchi design of experimental (DOE) methodology", International Journal of Hydrogen Energy, Vol. 34, (2009), 216-226. (DOI: 10.1016/j.ijhydene.2008.09.044).
99.   Lai, Z., Zhu, M., Yang, X., Wang, J. and Li, S., "Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture", Biotechnology for Biofuels, Vol. 7, (2014), 1-11. (DOI: 10.1186/s13068-014-0119-5).
100. Shuang, L., Chunying, W., Lili, Y., Wenzhe, L., Zhongjiang, W. and Lina, L., "Optimization of hydrogen production from agricultural wastes using mixture design", International Journal of Agricultural and Biological Engineering, Vol. 10, (2017), 246-254. (DOI: 10.3965/j.ijabe.20171003.2688).
101. Bao, H., Chen, C., Jiang, L., Liu, Y., Shen, M., Liu, W. and Wang, A., "Optimization of key factors affecting biohydrogen production from microcrystalline cellulose by the co-culture of Clostridium acetobutylicum X9+ Ethanoigenens harbinense B2", RSC Advances, Vol. 6, (2016), 3421-3427. (DOI: 10.1039/C5RA14192C).
102. Lee, K.S., Lo, Y.S., Lo, Y.C., Lin, P.J. and Chang, J.S., "Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor", Enzyme and Microbial Technology, Vol. 35, (2004), 605-612. (DOI: 10.1016/j.enzmictec.2004.08.013).
103. Wang, X.J., Ren, N.Q., Xiang W.S. and Qian Guo, W., "Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49", International Journal of Hydrogen Energy, Vol. 32, (2007), 748-754. (DOI: 10.1016/j.ijhydene.2006.08.003).
104. Ishikawa, M., Yamamura, S., Takamura, Y., Sode, K., Tamiya, E. and Tomiyama, M., "Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system", International Journal of Hydrogen Energy, Vol. 31, (2006), 1484-1489. (DOI: 10.1016/j.ijhydene.2006.06.014).
105. Collet, C., Adler, N., Schwitzguebel, J.P. and Peringer, P., "Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose", International Journal of Hydrogen Energy, Vol. 29, (2004), 1479-1485. (DOI: 10.1016/j.ijhydene.2004.02.009).
106. Yang, H., Shao, P., Lu, T., Shen, J., Wang, D., Xu, Z. and Yuan, X., "Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria", International Journal of Hydrogen Energy, Vol. 31, (2006), 1306-1313. (DOI: 10.1016/ j.ijhydene.2005.11.018).
107. Jo, J.H., Lee, D.S., Park, D., Choe, W. and Park, J.M., "Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods", Bioresource Technology, Vol. 99, (2008), 2061-2066. (DOI: :10.1016/ j.biortech.2007.04.027).
108. Hye, J., Sung, D., Park, D. and Moon, J., "Statistical optimization of key process variables for enhanced hydrogen production by newly isolated Clostridium tyrobutyricum JM1", International Journal of Hydrogen Energy, Vol. 33, (2008), 5176-5183. (DOI: 10.1016/ j.ijhydene.2008.05.012).
109. Ghosh, D. and Hallenbeck, P.C., "Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135", Bioresource Technology, Vol. 101, (2010), 1820-1825. (DOI: 10.1016/j.biortech.2009.10.020).
110. Ray, S., Reaume, S.J. and Lalman, J.A., "Developing a statistical model to predict hydrogen production by a mixed anaerobic mesophilic culture", International Journal of Hydrogen Energy, Vol. 35, (2010), 5332-5342. (DOI: 10.1016/j.ijhydene.2010.03.040).
111. Xiao, Y., Zhang, X., Zhu, M. and Tan, W., "Effect of the culture media optimization, pH and temperature on the biohydrogen production and the hydrogenase activities by Klebsiella. pneumoniae ECU-15", Bioresource Technology, Vol. 137, (2013), 9-17. (DOI: 10.1016/j.biortech.2013.03.109).
112. Gadhe, A., Sonawane, S.S. and Varma, M.N., "Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach", International Journal of Hydrogen Energy, Vol. 38, (2013), 6607-6617. (DOI: 10.1016/j.ijhydene.2013.03.078).
113. Faloye, F.D., Kana, E.B.G. and Schmidt, S., "Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique - semi pilot scale production assessment", International Journal of Hydrogen Energy, Vol. 39, (2014), 5607-5616. (DOI: 10.1016/j.ijhydene.2014.01.163).
114. Yin, Y. and Wang, J., "Optimization of hydrogen production by response surface methodology using gamma irradiated sludge as inoculum", Energy & Fuels, Vol. 30, (2016), 4096-4103. (DOI: 10.1021/acs.energyfuels.6b00262).
115. Shi, X., Jin, D., Sun, Q. and Li, W., "Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach", Renewable Energy, Vol. 35, (2010), 1493-1498. (DOI: 10.1016/j.renene.2010.01.003).
116. Jung, K., Kim, D., Kim, H. and Shin, H., "Optimization of combined (acid+thermal) pretreatment for fermentative hydrogen production from Laminaria japonica using response surface methodology (RSM)", International Journal of Hydrogen Energy, Vol. 36, (2011), 9626-9631. (DOI: 10.1016/j.ijhydene.2011.05.050).
117. De Leo, A., Davila-vazquez, G. and Alatriste-mondrago, F., "Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose : Influence of initial substrate concentration and pH", International Journal of Hydrogen Energy, Vol. 33, (2008), 4989-4997. (DOI: 10.1016/j.ijhydene.2008.06.065).
118. Fan, Y., Li, C. and Lay, J., "Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost", Bioresource Technology, Vol. 91, (2004), 189-193. (DOI: 10.1016/S0960-8524(03)00175-5).
119. Guo, Y., Kim, S., Sung, S. and Lee, P., "Effect of ultrasonic treatment of digestion sludge on bio-hydrogen production from sucrose by anaerobic fermentation", International Journal of Hydrogen Energy, Vol. 35, (2010), 3450-3455. (DOI: 10.1016/j.ijhydene.2010.01.090).
120. Argun, H., Kargi, F., Kapdan, I.K. and Oztekin, R., "Biohydrogen production by dark fermentation of wheat powder solution : Effects of C/N and C/P ratio on hydrogen yield and formation rate", International Journal of Hydrogen Energy, Vol. 33, (2008), 1813-1819. (DOI: 10.1016/j.ijhydene.2008.01.038).
121. Karlsson, A., Vallin, L. and Ejlertsson, J., "Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure", International Journal of Hydrogen Energy, Vol. 33, (2008), 953-962. (DOI: 10.1016/j.ijhydene.2007.10.055).
122. Chong, M., Aini, N., Rahman, A., Abdul, R., Abdul, S., Shirai, Y. and Hassan, M.A., "Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology", International Journal of Hydrogen Energy, Vol. 34, (2009), 7475-7482. (DOI: 10.1016/j.ijhydene.2009.05.088).
123. Chong, M.-L., Abdul Rahman, N.A., Yee, P.L., Abd Aziz, S., Abdul Rahim, R., Shirai, Y. and Hassan, M.A., "Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6", International Journal of Hydrogen Energy, Vol. 34, (2009), 8859-8865. (DOI: 10.1016/j.ijhydene.2009.08.061).
124. Cuetos, M.J., Gomez, X., Escapa, A. and Moran, A., "Evaluation and simultaneous optimization of bio-hydrogen production using 32 factorial design and the desirability function", Journal of Power Sources, Vol. 169, (2007), 131-139. (DOI: 10.1016/j.jpowsour.2007.01.050).
125. Lay, J.J., Fan, K.S., Hwang, J.I., Chang, J.I. and Hsu, P.C., "Factors affecting hydrogen production from food wastes by Clostridium-rich composts", Journal of Environmental Engineering-Asce, Vol. 131, (2005), 595-602. (DOI: 10.1061/(ASCE)0733-9372).
126. Lay, J., Lee, Y. and Noike, T., "Feasibility of biological hydrogen production from organic fraction of municipal solid", Water Research, Vol. 33, (1999), 2579-2586. (DOI: 10.1016/S0043-1354(98)00483-7).
127. Lay, J., "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen", Biotechnology and Bioengineering, Vol. 68, (2000), 269-278. (DOI: 10.1002/(SICI)1097-0290(20000505)68:3<269::AID-B).
128. Boboescu, I.Z., Ilie, M., Gherman, V.D., Mirel, I., Pap, B., Negrea, A., Kondorosi, E., Biro, T. and Maroti, G., "Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate", Biotechnology for Biofuels, Vol. 7, (2014), 1-15. (DOI: 10.1186/s13068-014-0139-1).
129. O-Thong, S., Prasertsan, P., Intrasungkha, N., Dhamwichukorn, S. and Birkeland, N.K., "Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge", International Journal of Hydrogen Energy, Vol. 33, (2008), 1221-1231. (DOI: 10.1016/j.ijhydene.2007.12.017).
130. Wang, J. and Wan, W., "Optimization of fermentative hydrogen production process by response surface methodology", International Journal of Hydrogen Energy, Vol. 33, (2008), 6976-6984. (DOI: 10.1016/j.ijhydene.2008.08.051).
131. Mu, Y., Zheng, X. and Yu, H., "Determining optimum conditions for hydrogen production from glucose by an anaerobic culture using response surface methodology (RSM)", International Journal of Hydrogen Energy, Vol. 34, (2009), 7959-7963. (DOI: 10.1016/j.ijhydene.2009.07.093).
132. Mu, Y., Wang, G. and Yu, H., "Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures", Enzyme and Microbial Technology, Vol. 38, (2006), 905-913. (DOI: 10.1016/j.enzmictec.2005.08.016).
133. Tenca, A., Schievano, A., Perazzolo, F., Adani, F. and Oberti, R., "Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste : Maximizing stable production without pH control", Bioresource Technology, Vol. 102, (2011), 8582-8588. (DOI: 10.1016/j.biortech.2011.03.102).
134. Xing, Y., Fan, S., Zhang, J., Fan, Y. and Hou, H., "Enhanced bio-hydrogen production from corn stalk by anaerobic fermentation using response surface methodology", International Journal of Hydrogen Energy, Vol. 36, (2011), 12770-12779. (DOI: 10.1016/ j.ijhydene.2011.07.065).
135. De Oliveira, M. and Ferreira-leitao, V.S., "Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production", Bioresource Technology, Vol. 219, (2016), 365-370. (DOI: 10.1016/j.biortech.2016.07.141).
136. Sangyoka, S., Reungsang, A. and Lin, C., "Optimization of biohydrogen production from sugarcane bagasse by mixed cultures using a statistical method", Sustainable Environment Research, Vol. 26, (2016), 235-242. (DOI: 10.1016/j.serj.2016.05.001).
137. Lopez-hidalgo, A.M., Sanchez, A. and De Leon-Rodriguez, A., "Simultaneous production of bioethanol and biohydrogen by Escherichia coli WDHL using wheat straw hydrolysate as substrate", Fuel, Vol. 188, (2017), 19-27. (DOI: 10.1016/j.fuel.2016.10.022).
138. Faloye, F.D., Kana, E.B.G. and Schmidt, S., "Optimization of hybrid inoculum development techniques for biohydrogen production and preliminary scale up", International Journal of Hydrogen Energy, Vol. 38, (2013), 11765-11773. (DOI: 10.1016/j.ijhydene.2013.06.129).
139. Thi, H., Kieu, Q., Nguyen, Y.T., Dang, Y.T. and Nguyen, B.T., "Optimization of culture conditions for hydrogen production by an anaerobic bacteria strain on soluble starch using response surface methodology", Bioprocessing & Biotechniques, Vol. 5, (2015). (DOI: 10.4172/2155-9821.1000265).
140. Sarma, S., Kumar, V. and Moholkar, V.S., "Kinetic and thermodynamic analysis (with statistical optimization) of hydrogen production from crude glycerol using Clostridium pasteurianum", International Journal of Hydrogen Energy, Vol. 441, (2016), 19972-19989. (DOI: 10.1016/j.ijhydene.2016.08.204).
141. Dong-jie, N., Jing-yuan, W., Bao-ying, W. and You-cai, Z., "Effect of Mo-containing additives on biohydrogen fermentation from cassava’s stillage", International Journal of Hydrogen Energy, Vol. 36, (2011), 5289-5295. (DOI: 10.1016/j.ijhydene.2011.01.139).
142. Mullai, P., Yogeswari, M.K. and Sridevi, K., "Optimization and enhancement of biohydrogen production using nickel nanoparticles-A novel approach", Bioresource Technology, Vol. 141,(2013), 212-219. (DOI: 10.1016/j.biortech.2013.03.082).
143. Sittijunda, S. and Reungsang, A., "Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures", International Journal of Hydrogen Energy, Vol. 37, (2012), 13789-13796. (DOI: 10.1016/j.ijhydene.2012.03.126).
144. Sreela-or, C., Imai, T., Plangklang, P. and Reungsang, A., "Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures", International Journal of Hydrogen Energy, Vol. 36, (2011), 14120-14133. (DOI: 10.1016/j.ijhydene.2011.04.136).
145. Taherdanak, M., Zilouei, H. and Karimi, K., "Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design", International Journal of Hydrogen Energy, Vol. 40, (2015), 12956-12963. (DOI: 10.1016/ j.ijhydene.2015.08.004).
146. Akhbari, A., Ibrahim, S., Zinatizadeh, A.A., Bonakdari, H., Ebtehaj, I., Khozani, Z.S., Vafaeifard, M. and Gharabaghi, B., "Evolutionary prediction of biohydrogen production by dark fermentation", Clean-Soil, Air, Water, Vol. 47, (2019). (DOI: 10.1002/clen.201700494).
147. Shi, Y., Gai, G.S., Zhao, X.T., Zhu, J.J. and Zhang, P., "Back propagation neural network (BPNN) simulation model and influence of operational parameters on hydrogen bio-production through integrative biological reactor (IBR) treating wastewater", Proceedings of 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE, (2010).
148. Ozkaya, B., Visa, A., Lin, C., Puhakka, J.A. and Yli-harja, O., "An artificial neural network based model for predicting H2 production rates in a sucrose- based bioreactor system", International Journal of Mathematical Physical and Engineering Sciences, Vol. 2, (2008), 20-25.
149. Rosales-Colunga, L.M., Garcia, R.G. and De Leon Rodriguez, A., "Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network", International Journal of Hydrogen Energy, Vol. 35, (2010), 13186-13192. (DOI: 10.1016/j.ijhydene.2010.08.137).
150. Nasr, M., Tawfik, A., Ookawara, S. and Suzuki, M., "Prediction of hydrogen production from starch wastewater using artificial neural networks", International Water Technology Journal, Vol. 4, (2014), 36-44. (DOI: 10.13140/RG.2.1.2582.3845).
151. Wang, J. and Wan, W., "Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology", International Journal of Hydrogen Energy, Vol. 34, (2009), 255-261. (DOI: 10.1016/ j.ijhydene.2008.10.010).
152. Mu, Y. and Yu, H., "Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm", International Journal of Hydrogen Energy, Vol. 32, (2007), 3308-3314. (DOI: 10.1016/j.ijhydene.2007.05.021).