Document Type : Review Article

Authors

1 Department of Physics, Bowen University, Iwo, Nigeria.

2 Department of Mechanical Engineering Science, University of Johannesburg, South Africa.

3 Department of Biochemistry, Covenant University, Ota, Nigeria.

Abstract

Several researchers have reported the prospects of biofuel commercialization in several countries across the globe. With over 400 million tons of biomass and 150 million tons of agro-waste produced annually in most developing countries, the prospect of biofuel commercialization looks promising. However, it is crucial to adopt a forward-thinking approach and anticipate potential challenges that may arise, building upon the lessons learned from current obstacles. This paper review addresses the current issues that have discouraged some developing countries against embracing biofuels as an economical tool to mitigate poverty. Also, future challenges that may scuttle biofuel commercialization in developing countries was discussed to provide a workable blueprint towards wealth creation. This review identified policies and political unwillingness as fundamental challenges that must be overcome in developing countries to attract investors. Other identified salient challenges include mono-economy, poor technical know-how, poor technology, government hypocrisy, lack of funds, sustainable biomass resources, inadequate farmland, poor policies, and weak infrastructure. It is recommended that conscious short- and long-term planning be implemented to actualize biofuel commercialization in developing 

Keywords

Main Subjects

  1. ADBG, (2021). Nigeria - Green Energy & Biofuels (Geb) Bio-Refinery Project - SEFA Project Summary Note. https://www.afdb.org/en/documents/nigeria-green-energy- biofuels-geb-bio-refinery-project-sefa-project-summary-note
  2. Aduloju Bunmi, (2021). Nigeria puts brakes on ambitious biorefinery plan. https://africaoilgasreport.com/2021/04/energy-transition/nigeria-puts-the-brakes-on-ambitious-biofuels-refinery-plan/
  3. Agricdemy, (2020), Nigeria agriculture data. https://agricdemy.com/post/nigeria-data (Accessed 02/04/2020)
  4. Ajeigbe, Hakeem A., Farid, W., Ayuba, K., Babu, N. M., Candidus, A. E., Damilola E., & Abubakar, I., (2015). A Farmer's Guide to Profitable Groundnut Production in Nigeria. http://oar.icrisat.org/8856/1/2015-084%20Gnut%20Production%20in%20Nigeria.pdf (Accessed 4/4/2020)
  5. Akinola, S. R. (2003). Coping with Infrastructural Deprivation through Collective Action among Rural People in Nigeria. Nordic Journal of African Studies, 16(1), 30–46. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6d98b88afc2c4d7b82c96738e5fdd6cd4558cc6c
  6. AMREC (2007). Mapping of soybean production areas in Nigeria. http://www.propcommaikarfi.org/wp-content/uploads/2013/08/28-Mapping-of-soybean-production-areas-in-Nigeria-3-07-1.pdf (Accessed 4/4/2020)
  7. Anderson, K., Rausser, G., & Swin- nen, J. (2013). Political economy of public policies: insights from distortions to agricultural and food markets. Journal of Economic Literature 51(2), 423-477. http://dx.doi.org/10.1257/jel.51.2.423
  8. Ashraf, A., El-Desouky, M.G., & El-Afify, M.A., (2021).Thermal and Spectroscopic Studies of Some Prepared Metal Complexes and Investigation of their Potential Anticancer and Antiviral Drug Activity against SARS-CoV2 by Molecular Docking Simulation. Biointerface Resarch in Applied Chemistry, 12, 1053-1075, https://doi.org/10.33263/BRIAC121.10531075.
  9. Biofuel (2019), Biofuels and Bioenergy. https://chemicalengineeringnob.com/biofuels-and-bioenergy-conference-2019-in-netherlands/  (Accessed 3/4/2020)
  10. Biofuel International (2020), US ethanol industry generated $43 billion in 2019, despite policy challenges https://biofuels-news.com/news/us-ethanol-industry-generated-43-billion-in-2019-despite-policy-challenges/  (Accessed 3/4/2020)
  11. Business_list (2022). Best Biomass Fuel Companies in Nigeria. https://www.businesslist.com.ng/category/biomass-fuel
  12. Canabarro, N.I., Silva-Ortiz, P., Nogueira, L.A.H., Cantarella, H., Maciel-Filho, R., & Souza, G.M., (2023).Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala, Renewable and Sustainable Energy Reviews, 171, 113019, https://doi.org/10.1016/j.rser.2022.113019.
  13. Cotula, L. (2009). Land grab or development opportunity?: Agricultural investment and international land deals in Africa. London: International Institute for Environment and Development (IIED) https://www.iied.org/12561iied
  14. Crepin, L., Barthe, M., Leray, F., Guillouet, S.E., 2018. Alka(e)ne synthesis in Cupriavidus necator boosted by the expression of endogenous and heterologous ferredoxin–ferredoxin reductase systems. Biotechnology and Bioengineering 115 (10), 2576–2584. https://doi.org/10.1002/bit.26805.
  15. Defterios John, (2020), Why oil prices are crashing and what it means, https://edition.cnn.com/2020/03/09/business/oil-price-crash-explainer/index.html (Accessed 04/04/2020)
  16. DOE, U. S. National Algal Biofuels Technology Roadmap. Maryland, (2010). https://www.energy.gov/eere/bioenergy/articles/national-algal-biofuels-technology-roadmap
  17. Elegbede, I., & Guerrero, C., (2016), Algae Biofuel in the Nigerian Energy Context, Environmental and Climate Technologies, 2016/17, 44-60 http://dx.doi.org/10.1515/rtuect-2016-0005
  18. Emetere Moses Eterigho & Akinyemi M.L. (2017) Atmospheric Dynamics of Air Pollution Dispersion and Sustainable Environment in Nigeria, Journal of Urban and Environmental Engineering, 11 (1), 51-57 https://core.ac.uk/download/pdf/143483494.pdf
  19. Emetere Moses Eterigho, Solomon Jack-Quincy, Akolade Adejumo, Oluwatobi Dauda, Israel Osunlola, Damola Adelekan & Oladipupo Adeyemi (2018). Empirical Analysis of biodiesel effect on the automobile properties of diesel engine: A case study of Olive and Soya biomass, Energy Science & Engineering, 6(6), 693-705. http://dx.doi.org/10.1002/ese3.244
  20. Emetere Moses Eterigho, & Adesina, T. A., (2019), Short review on the prospects of human biogas utilization in Nigeria, IOP Conference Series: Earth and Environmental Science 331 (1), 012051 http://dx.doi.org/10.1088/1755-1315/331/1/012051
  21. Ferreira, R., Teixeira, P.G., Siewers, V., & Nielsen, J., 2018. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proc Natl Acad Sci USA 115 (6), 1262–1267. https://doi.org/10.1073/pnas.1715282115.
  22. FMARD-Federal Ministry of Agriculture and Rural Development. (2016), The Agriculture Promotion Policy (2016-2020). Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria. pp.1-59. https://www.fao.org/faolex/results/details/en/c/LEX-FAOC165890/#:~:text=The%20present%20Agriculture%20Promotion%20Policy%20is%20founded%20on%20the%20following,7)%20Factoring%20climate%20change%20and
  23. Franco, J., Levidow, L., Fig, D., Goldfarb, L., Hönicke, M. & Mendonca, M. L. (2010). Assumptions in the European Union biofuels policy: frictions with experiences in Germany, Brazil and Mozambique. The Journal of Peasant Studies, 37(4), 661–98. http://dx.doi.org/10.1080/03066150.2010.512454
  24. Fu, H., Hu, J., Guo, X., Feng, J., Yang, S.-T., & Wang, J., 2021. Butanol production from Saccharina japonica hydrolysate by engineered Clostridium tyrobutyricum: The effects of pretreatment method and heat shock protein overexpression. Bioresource Technology 335, 125290. http://dx.doi.org/10.1016/j.biortech.2021.125290
  25. GAIN (2019), Brazil: Biofuels Annual, https://www.fas.usda.gov/data/brazil-biofuels-annual-5 (Accessed 3/4/2020)
  26. Garba, N.A., & Umar Z. U., (2015) Rice straw and husk as potential sources for mini-grid rural electricity in Nigeria, International Journal of Applied Sciences and Engineering Research, 4(4), 523–530. https://www.semanticscholar.org/paper/Rice-straw-%26-husk-as-potential-sources-for-rural-in-Garba-Zangina/415bf204b298172eee2684078098e8f9b11cabcc
  27. Geraldine Henningsen, Arne Henningsen, Sascha T. Schröder & Simon Bolwig, (2014). "The Development of Environmental Productivity: the Case of Danish Energy Plants," IFRO Working Paper 2014/04, University of Copenhagen, Department of Food and Resource Economics. http://okonomi.foi.dk/workingpapers/WPpdf/WP2014/IFRO_WP_2014_04.pdf
  28. Gillon, S. (2010). Fields of dreams: negotiating an ethanol agenda in the Midwest United States. The Journal of Peasant Studies, 37(4), 723–48. http://dx.doi.org/10.1080/03066150.2010.512456

 

  1. Guyomard Hervé, Forslund Agneta, & Dronne Yves (2011), Biofuels and World Agricultural Markets: Outlook for 2020 and 2050, https://www.intechopen.com/books/economic-effects-of-biofuel-production/biofuels-and-world-agricultural-markets-outlook-for-2020-and-2050 (Accessed 3/4/2020)
  2. Hammer, S.K., Zhang, Y., & Avalos, J.L., (2020). Mitochondrial compartmentalization confers specificity to the 2-ketoacid recursive pathway: increasing isopentanol production in Saccharomyces cerevisiae. ACS synthetic biology 9 (3), 546–555. http://dx.doi.org/10.1021/acssynbio.9b00420
  3. Hashemi, S.S., Karimi, K., & Karimi, A.M. (2019). Ethanolic ammonia pretreatment for efficient biogas production from sugarcane bagasse. Fuel, 248, 196-204, https://doi.org/10.1016/j.fuel.2019.03.080.
  4. Hoekman, S. Kent. (2009): Biofuels in the US–challenges and opportunities. Renewable energy 34, 14-22. https://doi.org/10.1016/j.renene.2008.04.030
  5. Hollander, G. (2010). Power is sweet: sugarcane in the global ethanol assemblage. The Journal of Peasant Studies, 37(4), 699–721. http://dx.doi.org/10.1080/03066150.2010.512455
  6. Hood Elizabeth E., & Lorenz Bauer (2016). Catalysts and Enzymes in Biofuel Production. https://www.biofuelsdigest.com/bdigest/2016/06/06/catalysts-and-enzymes-in-biofuel-production/ 30th/01/2022.
  7. IEA (2012). Energy balance for Nigeria . OECD/IEA . http://data.iea.org. Accessed 1st September 2012.
  8. IITA (1990), Cassava in tropical Africa:A Reference Manual https://www.iita.org/wpcontent/uploads/2016/06/Cassava_in_tropical_Africa_a_reference_manual_1990.pdf (Accessed 4/4/2020)
  9. IRENA (2019). Global energy transformation: A roadmap to 2050 (2019 edition), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/apps/DigitalArticles/-/media/652AE07BBAAC407ABD1D45F6BBA8494B.ashx (Accessed 11/5/2023)
  10. Jutakridsada, P., Saengprachatanarug, K., Kasemsiri, P., Hiziroglu, S., Kamwilaisak, K., & Chindaprasirt, P., (2019). Bioconversion of Saccharum officinarum leaves for ethanol production using separate hydrolysis and fermentation processes. Waste and Biomass Valorization, 10, 817-825, https://doi.org/10.1007/s12649-017-0104-x.
  11. Kemausuor, F., Akowuah, J.O., & Ofori, E., (2013). Assessment of feedstock options for biofuels production in Ghana. Sust. Bioenergy Syst. 3, 119–128. http://dx.doi.org/10.4236/jsbs.2013.32017
  12. Khan, A., Jamil, F. & Khan, N.H. (2019). Decomposition analysis of carbon dioxide emissions in Pakistan. SN Appl. Sci. 1, 1012 . https://doi.org/10.1007/s42452-019-1017-z
  13. Kiggundu Nicholas, Isa Kabenge, Samuel Gyebi Arhin, & Noble Banadda, (2017). Impacts of Biofuel Policies on Welfare and Food Security: Assessing the Socioeconomic and Environmental Tradeoffs in Sub-Saharan Africa, International Journal of Renewable Energy Research, 7(4), 2162-2171 https://doi.org/10.20508/ijrer.v7i4.6272.g7264
  14. Kim, B., & Gadd, G. (2019). Anaerobic fermentation. In Prokaryotic Metabolism and Physiology (pp. 230-267). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316761625.008.
  15. Kristen Schubert and Jerrod Mason, (2015), Cost-Benefit Analysis of USAID/Nigeria's MARKETS II Program. https://www.usaid.gov/sites/default/files/documents/1865/150305%20MARKETS%20CBA%20REPORT%20FINAL.pdf (Accessed 4/4/2020)
  16. Kumar, V., Sindhu, R. K., & Kumar, S. (2018). Comparative analysis of green diesel versus petro-diesel in compression ignition engine. Bioscience biotechnology research communications, 11(1), 128-135. http://dx.doi.org/10.21786/bbrc/11.1/18
  17. Lackner, M., Winter, F., & Palotas, A., (2013) Combustion: from basics to applications. Wiley-VCH, Weinheim. ISBN 978-3-527-33376-9. http://dx.doi.org/10.1002/9783527667185
  18. Lee Justin (2017), Nigeria to register 16M farmers in biometric database.  https://www.biometricupdate.com/201703/nigeria-to-register-16m-farmers-in-biometric-database      (Accessed 02/04/2020)
  19. McMichael, P. (2009). The agrofuels project at large. Critical Sociology, 35(6), 825–839 http://dx.doi.org/10.1177/0896920509343071
  20. Mohamed G. El-Desouky, Muhammad A. Khalil, Ashraf A. El-Bindary, & Mohamed A. El-Bindary. (2022). Biological, Biochemical and Thermochemical Techniques for Biofuel Production: an Updated Review, Biointerface Research in Applied Chemistry 12(3), 3034 – 3054 https://doi.org/10.33263/BRIAC123.30343054.
  21. Monsalve, S. Suárez, Monsalve Suárez, Ulrike Bickel, Frank Garbers, Lucia Goldfar, & Vilmar Schneider. (2008). Agrofuels in Brazil. https://fianat-live-7318544636224c40bb0b0af5b09-745b6a8.divio-media.net/filer_public/6a/3e/6a3ed02b-8513-4996-82d0-a70c75a81a45/agrofuelsinbrazil.pdf
  22. Moses, N., Mohammed, S., Saidu, H., Galadima, A.I., Umar, D.M., Abubakar, K., Kefa, M., & Billah, C., (2017). Determination of physicochemical parameters and riparian land effect on kwadon stream. Adv. Res. Design,36, 13–24. https://www.akademiabaru.com/doc/ARDV36_N1_P13_24.pdf
  23. Nicha Sritong, Kamphol Promjiraprawat, & Bundit Limmeechokchai, (2014). CO2 Mitigation in the Road Transport Sector in Thailand: Analysis of Energy Efficiency and Bio-energy, Energy Procedia, 52,131-141, https://doi.org/10.1016/j.egypro.2014.07.063.
  24. Nitschel, R., Ankenbauer, A., Welsch, I., Wirth, N.T., Massner, C., Ahmad, N., McColm, S., Borges, F., Fotheringham, I., Takors, R., & Blombach, B., (2020). Engineering Pseudomonas putida KT2440 for the production of isobutanol. Life Sci. 20 (5-6), 148–159. https://doi.org/10.1002/elsc.201900151.
  25. Nordsid, (2019), Price And Need For Reliable Electricity Are Spurring Solar Sales To Businesses. https://nordsip.com/2019/01/24/price-and-need-for-reliable-electricity-are-spurring-solar-sales-to-businesses-press-release (Acessed 4/4/2020)
  26. Notaras M. (2018). All Biofuel Policies Are Political, https://ourworld.unu.edu/en/all-biofuel-policies-are-political
  27. NS Energy, (2019). Top five countries for biofuel production across the globe, https://www.nsenergybusiness.com/features/top-biofuel-production-countries/ (Acessed 04/04/2020)
  28. Ogbonna, I.O., Moheimani, N.R. &Ogbonna, J.C. (2015) Potentials of microalgae biodiesel production in Nigeria, Nigerian Journal of Biotechnology, 29, 44–55. http://dx.doi.org/10.4314/njb.v29i1.7
  29. OGNPBI (2007), Official Gazette of the Nigerian Bio-fuel Policy and Incentives. http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/laws/1517.pdf (Accessed 04/04/2020)
  30. Oji Chuka (2020), Snail Farming Business Plan In Nigeria, https://www.pinterest.ca/pin/25966135334283235/ (Accessed 02/04/2020)
  31. Oliver, J.W.K., Machado, I.M.P., Yoneda, H., & Atsumi, S., (2013). Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA 110 (4), 1249–1254. https://doi.org/10.1073/pnas.1213024110.
  32. Oyatoye, E. T. O. (1994). The impact of Rural Roads on Agricultural Development in Nigeria: A case study of Kwara State. Ife Journal of Agriculture, 16, 114-122. https://ija.oauife.edu.ng/index.php/ija/article/view/574
  33. Oyedele O. A., Oladipo I. O. & Adebayo A. O., (2015), Investigation into Edible and Non-edible Oil Potentials of Tiger Nut (Cyperus esculentus) Grown in Nigeria, Global journal of Engineering, Design & Technl., 4(4), 20-24 https://www.longdom.org/articles-pdfs/investigation-into-edible-and-nonedible-oil-potentials-of-tiger-nut-cyperus-esculentus-grown-in-nigeria.pdf
  34. Park, J.M..,Rathnasingh, C.., & Song, H., (2017). Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production. Journal of Industrial Microbiology and Biotechnology. 44(3), 431-441. http://dx.doi.org/10.1007/s10295-016-1898-4
  35. Pragya, N., & Pandey, K. K. (2016). Life cycle assessment of green diesel production from microalgae. Renewable energy, 86, 623-632. http://dx.doi.org/10.1016/j.renene.2015.08.064
  36. Rajeswari Shanmugam, Divya Baskaran, Panchamoorthy Saravanan, Manivasagan Rajasimman, Natarajan Rajamohan, & Yasser Vasseghian,(2022). Production of ethanol from biomass – Recent research, scientometric review and future perspectives, Fuel, 317, 123448, https://doi.org/10.1016/j.fuel.2022.123448.
  37. Rajput, A.A., &Visvanathan, C., (2018). Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. Journal of environmental management, 221, 45-52, https://doi.org/10.1016/j.jenvman.2018.05.011.
  38. Razaghifard, R. (2013). Algal biofuels. Photosynth Res;117,207e19. http://dx.doi.org/10.1007/s11120-013-9828-z
  39. Renewable Fuels Association (RFA). 2012. 2012 Ethanol Industry Outlook. Renewable Fuels Association, Washington, DC. https://www.renewableenergymagazine.com/noor-hal-cuellar/ethanol-industry-outlook-2012-the-challenge-is (Accessed 24/12/2023)
  40. Robbins Martin, (2011). Policy: Fuelling politics, Nature, 474, S22–S24   http://dx.doi.org/10.1038/474S022a
  41. Rodriguez, G.M., & Atsumi, S., (2014). Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metabolic Engineering. 25, 227–237. http://dx.doi.org/10.1016/j.ymben.2014.07.012
  42. Sathesh-Prabu, C., Kim, D., & Lee, S.K., (2020). Metabolic engineering of Escherichia coli for 2, 3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system. Bioresource technology. 309, 123361. http://dx.doi.org/10.1016/j.biortech.2020.123361
  43. Schnepf, R., & B. D. Yacobucci. (2013). Renewable Fuel Standard (RFS): Overview and Congressional Research Service, Washington, DC. https://sgp.fas.org/crs/misc/R40155.pdf (Accessed 24/12/2023)
  44. Sinha J., and Indranil Biswas, (2008). Rural Energy security in India: reality checks. https://nistads.res.in/all-html/Rural%20Energy%20security%20in%20India_%20reality%20checks.html (Accessed 4/4/2020)
  45. Siripong W, Wolf P, Kusumoputri TP, Downes JJ, Kocharin K, Tanapongpipat S, & Runguphan W., (2018) Metabolic engineering of Pichia pastoris for produc-tion of isobutanol and isobutyl acetate. Biotechnol Biofuels 11,1 https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-017-1003-x (Accessed 24/12/2023)
  46. Statista (2021). Petrol import into Nigeria between the 1st quarter of 2018 and the 1st quarter of 2021. https://www.statista.com/statistics/1165962/petrol-import-in-nigeria/
  47. Subramani Velu, Angelo Basile, & Nejat Veziroglu (2015). Compendium of Hydrogen Energy Hydrogen Production and Purification 1st Edition - May 23, 2015 eBook ISBN: 9781782423836. Hardcover ISBN: 9781782423614. https://doi.org/10.1016/C2014-0-02671-8
  48. Szetela Beata, Bekhzod Djalilov, & Raufhon Salahodjaev (2022). Renewable Energy and CO2 Emissions in Top Natural Resource Rents Depending Countries: The Role of Governance, Frontiers in Energy Research, 10, 1-5. https://doi.org/10.3389/fenrg.2022.872941 .
  49. Tai, M., & Stephanopoulos, G., (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering. 15, 1–9 http://dx.doi.org/10.1016/j.ymben.2012.08.007
  50. Tarafdar, A., Sirohi, R., Gaur, V.K., Kumar, S., Sharma, P., Varjani, S., Pandey, H.O., Sindhu, R., Madhavan, A., & Rajasekharan, R., (2021). Engineering interventions in enzyme production: Lab to industrial scale. Bioresource technology 361, https://doi.org/10.1016/j.biortech.2022.127770
  51. Tiwari, S., Jadhav, S.K., Sharma, M., & Tiwari, K.L., (2014). Fermentation of waste fruits for bioethanol production. Asian J. Biol. Sci. 7, 30–34. http://dx.doi.org/10.3923/ajbs.2014.30.34
  52. Tsai, Y.-Y., Ohashi, T., Wu, C.-C., Bataa, D., Misaki, R., Limtong, S., & Fujiyama, K., (2019). Delta 9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. Journal of Bioscience and Bioengineering. 127 (4), 430–440. http://dx.doi.org/10.1016/j.jbiosc.2018.09.005
  53. Urbanchuk, J.M. (2013). Contribution of the Ethanol Industry to the Economy of the United States. http://ethanolrfa.3cdn.net/af18baea89e31dadbe_68m6bnto3.pdf. (Accessed 04/04/2020)
  54. Wang T., (2019). Global biofuel production by select country 2018. https://www.statista.com/statistics/274168/biofuel-production-in-leading-countries-in-oil-equivalent/ (Accessed 4/4/2020)
  55. Wang, P., Zhang, J., Feng, J., Wang, S., Guo, L., Wang, Y., Lee, Y.Y., Taylor, S., McDonald, T., & Wang, Y., (2019). Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass. Bioresource technology. 281, 217–225. http://dx.doi.org/10.1016/j.biortech.2019.02.096
  56. Wen, Z., Ledesma-Amaro, R., Lu, M., Jin, M., & Yang, S., (2020). Metabolic Engineering of Clostridium cellulovorans to improve butanol production by consolidated bioprocessing. ACS Synthetic Biology. 9 (2), 304–315. http://dx.doi.org/10.1021/acssynbio.9b00331
  57. Wess, J., Brinek, M., & Boles, E., (2019). Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Biotechnology for Biofuels. 12 (1), http://dx.doi.org/10.1186/s13068-019-1486-8
  58. World Bank (2020). orld Bank Open Data Nigeria. https://data.worldbank.org/ (Accessed 4/4/2020)
  59. Yang, S., Mohagheghi, A., Franden, M.A., Chou, Y.-C., Chen, X., Dowe, N., Himmel, M.E., & Zhang, M., (2016). Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnology for Biofuels. 9 (1), http://dx.doi.org/10.1186/s13068-016-0606-y
  60. Yang, Z.,& Zhang, Z., (2018). Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnology for Biofuels. 11 (1), http://dx.doi.org/10.1186/s13068-018-1031-1
  61. Yu, A., Zhao, Y., Li, J., Li, S., Pang, Y., Zhao, Y., Zhang, C., & Xiao, D., 2020. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Microbiology Open. 9 (7), http://dx.doi.org/10.1002/mbo3.1051
  62. Zhang, Q., Hu, J., & Lee, D.-J., (2016). Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 98, 108-119, https://doi.org/10.1016/j.renene.2016.02.029.
  63. Zhou Adrian, & Elspeth Thomson. (2009), The development of biofuels in Asia, Applied Energy, 86, 11-20.  http://dx.doi.org/10.1016/j.apenergy.2009.04.028
  64. Zhu, L., Li, P., Sun, T., Kong, M., Li, X., Ali, S., Liu, W., Fan, S., Qiao, J., & Li, S., 2020. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresource technology. 313, 123724. http://dx.doi.org/10.1016/j.biortech.2020.123724
  65. Zilberman David, Gal Hochman, Scott Kaplan, & Eunice Kim (2014). Political Economy of Biofuel, Choices, 29(1), 1–5 http://dx.doi.org/10.1007/978-1-4939-0518-8_11