Document Type : Research Article

Authors

Department of Biotechnology, Saveetha School of Engineering, , P. O. Box: 602105, SIMATS, Chennai, India.

10.30501/jree.2024.417478.1694

Abstract

The concentration of India's population has presented the country with various challenges regarding the exponential growth of Municipal Solid Waste (MSW). Globally, the increasing volumes of rubbish have made waste management both environmentally and socially burdensome. The development of safe and renewable resources has assisted in municipal solid waste management. Garbage-to-energy conversion has proven to be an effective method for reducing municipal waste. Biofuel and biogas generation from municipal solid waste are among the renewable energy possibilities within the broader framework of waste management. The review examines sustainable treatment methods for managing municipal waste. It provides an overview of the characteristics and environmental impacts of municipal solid waste. To enhance energy generation, pretreatment approaches have been integrated into waste conversion processes. The review underscores the significance of thermal and biological conversion-based approaches to municipal waste management. Biological treatment technologies have emerged as a significant focal point for energy recovery while maintaining environmental sustainability. Additionally, the review assesses the applicability of various Indian policies for Municipal Solid Waste Management.

Keywords

Main Subjects

  1. Abubakar, I.R., Maniruzzaman, K.M., Dano, U.L., Alshihri, F.A., Alshammari, M.S., Ahmed, S.M.S., Al-Gehlani, W.A.G., & Alrawaf, T.I. (2022). Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. International Journal of Environmental Research and Public Health, 19, https://doi.org/10.3390/ijerph191912717
  2. Adimalla, N., Qian, H., Nandan, M.J., & Hursthouse, A.S. (2020). Potentially toxic elements (PTEs) pollution in surface soils in a typical urban region of south India: An application of health risk assessment and distribution pattern. Ecotoxicology and Environment Safety, 203, 111055. https://doi.org/10.1016/j.ecoenv.2020.111055
  3. Ahmed, B., Tyagi, S., Rahmani, A.M., Kazmi, A.A., Varjani, S., & Tyagi, V.K. (2022). Novel insight on ferric ions addition to mitigate recalcitrant formation during thermal-alkali hydrolysis to enhance biomethanation. Science of the Total Environment, 829, https://doi.org/10.1016/j.scitotenv.2022.154621
  4. Allegue, L.D., Puyol, D., & Melero, J.A. (2020). Novel approach for the treatment of the organic fraction of municipal solid waste: Coupling thermal hydrolysis with anaerobic digestion and photo-fermentation. Science of the Total Environment 714, https://doi.org/10.1016/j.scitotenv.2020.136845
  5. Amodeo, C., Hattou, S., Buffiere, P., & Benbelkacem, H. (2021). Temperature phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW) and digested sludge (DS): Effect of different hydrolysis conditions. Waste Management, 126, 21–29. https://doi.org/10.1016/j.wasman.2021.02.049
  6. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O., & Odeyemi, O. (2020). Waste Management through Composting: Challenges and Potentials. Sustainability, 12, https://doi.org/10.3390/su12114456
  7. Babu, R., Veramendi, P.M.P., & Rene, E.R. (2021). Strategies for resource recovery from the organic fraction of municipal solid waste. Case Studies in Chemical and Environmental Engineering, 3, 100098. https://doi.org/10.1016/j.cscee.2021.100098
  8. Basinas, P., Rusín, J., & Chamrádová, K. (2021). Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. Environmental Research, 192, https://doi.org/10.1016/j.envres.2020.110202
  9. Bello, A.S., Al-Ghouti, M.A., & Abu-Dieyeh, M.H. (2022). Sustainable and long-term management of municipal solid waste: A review. Bioresource Technology Reports, 18, https://doi.org/10.1016/j.biteb.2022.101067
  10. Biase, A., Kowalski, M.S., Devlin, T.R., & Oleszkiewicsz, J.A. (2019). Moving bed biofilm reactor technology in municipal wastewater treatment: A review. Journal of Environmental Management, 247, 849-866. https://doi.org/10.1016/j.jenvman.2019.06.053
  11. Blasenbauer, D., Huber, F., Muhl, J., Fellner, J., & Lederer, J. (2023). Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator. Waste Management, 161, 142-155. https://doi.org/10.1016/j.wasman.2023.02.021
  12. Bona, D., Beggio, G., Weil, T., Scholz, M., Bertolini, S., Grandi, L., Baratieri, M., Schievano, A., Silvestri, S., & Pivato, A. (2020). Effects of woody biochar on dry thermophilic anaerobic digestion of organic fraction of municipal solid waste. Journal of Environmental Management, 267, https://doi.org/10.1016/j.jenvman.2020.110633
  13. Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Srisupa, S., & Chaiyaso, (2021). Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Saccharomyces cerevisiae TC-5. Journal of Fungi, 7, https://doi.org/10.3390/jof7070547
  14. Budych-Gorzna, M., Jaroszynski, L., & Oleskowicz-Popiel, P. (2021). Improved energy balance at a municipal wastewater treatment plant through waste activated sludge low-temperature alkaline pretreatment. Journal of Environment Chemical Engineering,. 9, https://doi.org/10.1016/j.jece.2021.106366
  15. Central Pollution Control Board, 2021. Annual Report on Solid Waste Management (2020-21). Central Pollution Control Board, Delhi, 288-446. https://cpcb.nic.in/uploads/MSW/MSW_AnnualReport_2020-21.pdf
  16. Cesaro, A., Conte, A., Carrère, H., Trably, E., Paillet, F., & Belgiorno, V. (2020). Formic acid pretreatment for enhanced production of bioenergy and biochemicals from organic solid waste. Biomass and Bioenergy, 133, 105455. https://doi.org/10.1016/j.biombioe.2019.105455
  17. Chan, W. P., Veksha, A., Lei, J., Oh, W.-D., Dou, X., Giannis, A., Lisak, G., & Lim, T.-T. (2019). A hot syngas purification system integrated with downdraft gasification of municipal solid waste. Applied Energy, 237, 227–240. https://doi.org/10.1016/j.apenergy.2019.01.031
  18. Chanthakett, A., Arif, M.T., Khan, M.M.K., & Oo, A.M.T. (2021). Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management, 291, 112661. https://doi.org/10.1016/j.jenvman.2021.112661
  19. Chattopadhyay, S., Dutta, A., & Ray, S. (2009). Municipal solid waste management in Kolkata, India – A review. Waste Management, 29(4), 1449–1458. https://doi.org/10.1016/j.wasman.2008.08.030
  20. Chen, G., Jamro, I.A., Samo, S.R., Wenga, T., Baloch, H.A., Yan, B., & Ma, W. (2020). Hydrogen-rich syngas production from municipal solid waste gasification through the application of central composite design: An optimization study. International Journal of Hydrogen Energy, 45, 33260-33273. https://doi.org/10.1016/j.ijhydene.2020.09.118
  21. Chhabra, V., Bambery, K., Bhattacharya, S., & Shastri, Y. (2020). Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components. Renewable Energy, 148, 388-401. https://doi.org/10.1016/j.renene.2019.10.045
  22. Cremiato, R., Mastellone, M.L., Tagliaferri, C., Zaccariello, L., & Lettieri, P. (2018). Environmental impact of municipal solid waste management using life cycle assessment: the effect of anaerobic digestion, materials recovery and secondary fuels production. Renewable Energy, 124, 180-188. https://doi.org/10.1016/j.renene.2017.06.033
  23. Cudjoe, D., & Wang, H. (2022). Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Processing Technology, 237, https://doi.org/10.1016/j.fuproc.2022.107470
  24. Das, N., Jena, P.K., Padhi, D., Mohanty, M.K., & Sahoo, G. (2023). A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Conversion and Biorefinery, 13, 1503-1527. https://doi.org/10.1007/s13399-021-01294-3
  25. Dasgupta, A., & Chandel, M.K. (2019). Enhancement of biogas production from organic fraction of municipal solid waste using hydrothermal pretreatment. Bioresource Technology Reports, 7, 100281. https://doi.org/10.1016/j.biteb.2019.100281
  26. Dasgupta, A., & Chandel, M.K. (2020). Enhancement of biogas production from organic fraction of municipal solid waste using alkali pretreatment. Journal of Material Cycles and Waste Management, 22, 757-767. https://doi.org/10.1007/s10163-020-00970-2
  27. Dastyar, W., Azizi, M.M.S., Dhadwal, M., & Ranjan Dhar, B. (2021). High-solids anaerobic digestion of organic fraction of municipal solid waste: Effects of feedstock to inoculum ratio and percolate recirculation time. Bioresource Technology, 337, https://doi.org/10.1016/j.biortech.2021.125335
  28. Dehkordi, S.M.M.N., Jahromi, A.R.T., Ferdowsi, A., Shumal, M., & Dehnavi, A. (2019). Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran). Renewable and Sustainable Energy Reviews, 119, https://doi.org/10.1016/j.rser.2019.109586
  29. Ebrahimian, F., & Karimi, K. (2019). Efficient biohydrogen and advanced biofuel coproduction from municipal solid waste through a clean process. Bioresource Technology, 300, https://doi.org/10.1016/j.biortech.2019.122656
  30. Ebrahimian, F., Khoshnevisan, B., Mohammadi, A., Karimi, K., & Birkved, M. (2023). A biorefinery platform to valorize organic fraction of municipal solid waste to biofuels: An early environmental sustainability guidance based on life cycle assessment. Energy Conversion and Management, 283, https://doi.org/10.1016/j.enconman.2023.116905
  31. Esfilar, R., Bagheri, M., & Golestani, B. (2021). Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria. Renewable and Sustainable Energy Reviews, 146, https://doi.org/10.1016/j.rser.2021.111190
  32. Fan, C., Wang, B., Ai, H., & Liu, Z. (2022). A comparative study on characteristics and leaching toxicity of fluidized bed and grate furnace MSWI fly ash. Journal of Environmental Management, 305, https://doi.org/10.1016/j.jenvman.2021.114345
  33. Fang, S., Lin, Y., Lin, Y., Chen, S., Shen, X., Zhong, T., Ding, L., & Ma, X. (2019). Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge. Energy, https://doi.org/10.1016/j.energy.2019.116310
  34. Faraji, M., & Saidi, M. (2022). Process simulation and optimization of groundnut shell biomass air gasification for hydrogen-enriched syngas production. International Journal of Hydrogen Energy, 47, 13579-13591. https://doi.org/10.1016/j.ijhydene.2022.02.105
  35. Farmanbordar, S., Amiri, H., & Karimi, K. (2018). Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. Bioresource Technology, 270, 236-244. https://doi.org/10.1016/j.biortech.2018.09.017
  36. Fazzino, F., Folino, A., Mauriello, F., Pedulla, A., & Calabro, P.S. (2021). Biofuel production from fruit and vegetable market waste and mature landfill leachate by an active filter-anaerobic digestion integrated system. Energy Conversion and Management, 12, https://doi.org/10.1016/j.ecmx.2021.100130
  37. Feng, S., Hou, S., Huang, X., Fang, Z., Tong, Y., & Yang, H. (2019). Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge. Electronic Journal of Biotechnology, 39, 98-106. https://doi.org/10.1016/j.ejbt.2019.04.001
  38. Ganguly, R.K., & Chakraborty, S.K. (2021). Integrated approach in municipal solid waste management in COVID-19 pandemic: Perspectives of a developing country like India in a global scenario. Stud. Chemical and Environmental Engineering, 3, 100087. https://doi.org/10.1016/j.cscee.2021.100087
  39. Gikas, P., Zhu, B., Batistatos, N., & Zhang, R. (2018). Evaluation of the rotary drum reactor process as pretreatment technology of municipal solid waste for thermophilic anaerobic digestion and biogas production. Journal of Environmental Management, 216, 96-104. https://doi.org/10.1016/j.jenvman.2017.07.050
  40. Gujre, N., Mitra, S., Soni, A., Agnihotri, R., Rangan, L., Rene, E.R., & Sharma, M.P. (2020). Speciation, contamination, ecological and human health risks assessment of heavy metals in soils dumped with municipal solid wastes. Chemosphere, 262, https://doi.org/10.1016/j.chemosphere.2020.128013
  41. Guven, H., Evren Ersahin, M., Kaan Dereli, R., Ozgun, H., Isik, I., & Ozturk, I. (2019). Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems for co-treatment of municipal wastewater and food waste. Energy, 172, 1027-1036. https://doi.org/10.1016/j.energy.2019.01.150
  42. Hasan, M.M., Rasul, M.G., Khan, M.M.K., Ashwath, N., & Jahirul, M.I. (2021). Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renewable and Sustainable Energy Reviews, 145, https://doi.org/10.1016/j.rser.2021.111073
  43. Hemansi, & Saini, J.K. (2023). Enhanced cellulosic ethanol production via fed-batch simultaneous saccharification and fermentation of sequential dilute acid-alkali pretreated sugarcane bagasse. Bioresource Technology, 372, https://doi.org/10.1016/j.biortech.2023.128671
  44. Istrate, I.-R., Iribarren, D., Galvez-Martos, J.-L., & Dufour, J. (2020). Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, 157, https://doi.org/10.1016/j.resconrec.2020.104778
  45. Joseph, A.M., Snellings, R., Nielsen, P., Matthys, S., & Belie, N.D. (2020). Pre-treatment and utilisation of municipal solid waste incineration bottom ashes towards a circular economy. Construction and Building Materials, 260, https://doi.org/10.1016/j.conbuildmat.2020.120485
  46. Joseph, K., Rajendiran, S., Senthilnathan, R., & Rakesh M. (2012). Integrated approach to solid waste management in Chennai: an Indian metro city. Journal of Material Cycles and Waste Management, 14, 75-84. https://doi.org/10.1007/s10163-012-0046-0
  47. Jung, H., Sewu, D.D., Ohemeng-Boahen, G., Lee, D.S., & Woo, S.H. (2019). Characterization and adsorption performance evaluation of waste char by-product from industrial gasification of solid refuse fuel from municipal solid waste. Waste Management, 91, 33–41. https://doi.org/10.1016/j.wasman.2019.04.053
  48. Karthikeyan, L., Suresh, V.M., Krishnan, V., Tudor, T., & Varshini, V. (2018). The Management of Hazardous Solid Waste in India: An Overview. Environments, 5, https://doi.org/10.3390/environments5090103
  49. Khan, S., Anjum, R., Raza, S.T., Bazai, N.A., & Ihtisham, M. (2022). Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere, 288, https://doi.org/10.1016/j.chemosphere.2021.132403
  50. Kheiri, R., Saray, R.K., & Kashani, B.O. (2022). Thermo-economic-environmental analysis of a new tri-generation seasonal system with gas turbine prime mover based on municipal solid waste gasification. Energy Conversion and Management, 265, https://doi.org/10.1016/j.enconman.2022.115755
  51. Korai, M.S., Mahar, R.B. & Uqaili, M.A. (2016). Optimization of waste to energy routes through biochemical and thermochemical treatment options of municipal solid waste in Hyderabad, Pakistan. Energy. Convers. Manage. 124, 333-343. https://doi.org/10.1016/j.enconman.2016.07.032
  52. Kulkarni, B.L. (2020). Environmental sustainability assessment of land disposal of municipal solid waste generated in Indian cities – A review. Environmental Development, 33, 100490. https://doi.org/10.1016/j.envdev.2019.100490
  53. Kumar, A., & Samadder, S.R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197, https://doi.org/10.1016/j.energy.2020.117253
  54. Kumar, A., & Samadder, S.R. (2022). Assessment of energy recovery potential and analysis of environmental impacts of waste to energy options using life cycle assessment. Journal of Cleaner Production, 365, 132854. https://doi.org/10.1016/j.jclepro.2022.132854
  55. Lasek, J.A., Glod, K., & Slowik, K. (2021). The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure. Renewable Energy, 179, 828-841. https://doi.org/10.1016/j.renene.2021.07.106
  56. Liang, S., Chen, J., Guo, M., Feng, D., Liu, L., & Qi, T. (2020). Utilization of pretreated municipal solid waste incineration fly ash for cement-stabilized soil. Waste Management, 105, 425–432. https://doi.org/10.1016/j.wasman.2020.02.017
  57. Lu, J.-S., Chang, Y., Poon, C.-S., & Lee, D.-J. (2020). Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technology, 312, https://doi.org/10.1016/j.biortech.2020.123615
  58. Lu, J.-W., Zhang, S., Hai, J., & Lei, M. (2017). Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Management, 69, 170–186. http://dx.doi.org/10.1016/j.wasman.2017.04.014
  59. Lucian, M., Volpe, M., Merzari, F., Wüst, D., Kruse, A., Andreottola, G., & Fiori, L. (2020). Hydrothermal Carbonization coupled with Anaerobic Digestion for the valorization of the Organic Fraction of Municipal Solid Waste. Bioresource Technology, 314, 123734. https://doi.org/10.1016/j.biortech.2020.123734
  60. Mahmoodi, P., Karimi, K., & Taherzadeh, M.J. (2018). Hydrothermal processing as pretreatment for efficient production of ethanol and biogas from municipal solid waste. Bioresource Technology, 261, 166–175. https://doi.org/10.1016/j.biortech.2018.03.115
  61. Maiurova, A., Kurniawan, T.A., Kustikova, M., Bykovskaia, E., Othman, M.H.D., Singh, D., & Goh, H.H. (2022). Promoting digital transformation in waste collection service and waste recycling in Moscow (Russia): Applying a circular economy paradigm to mitigate climate change impacts on the environment. Journal of Cleaner Production, 354, https://doi.org/10.1016/j.jclepro.2022.131604
  62. Makarichi, L., Jutidamrongphan, W., & Techato, K. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812–821. https://doi.org/10.1016/j.rser.2018.04.088
  63. Malav, L.C., Yadav, K.K., Gupta, N., Kumar, S., Sharma, G.K., Krishnan, S., Rezania, S., Kamyab, H., Pham, Q.B., Yadav, S., Bhattacharyya, S., Yadav, V.K., & Bach, Q.-V. (2020). A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. Journal of Cleaner Production, 277, https://doi.org/10.1016/j.jclepro.2020.123227
  64. Mani, S., & Singh, S. (2016). Sustainable Municipal Solid Waste Management in India: A Policy Agenda. Procedia Environmental Sciences, 35, 150–157. https://doi.org/10.1016/j.proenv.2016.07.064
  65. Mboowa, D., Quereshi, S., Bhattacharjee, C., Tonny, K., & Dutta, S. (2017). Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India). Energy, 123, 386–391. https://doi.org/10.1016/j.energy.2017.02.009
  66. Mehmood, A., Ahmed, S., Viza, E., Bogush, A., & Ayyub, R.M. (2021). Drivers and barriers towards circular economy in agri-food supply chain: A review. Business Strategy and Development, 4, 465-481. https://doi.org/10.1002/bsd2.171
  67. Mlaik, N., Khoufi, S., Hamza, M., Masmoudi, M.A., & Sayadi, S. (2019). Enzymatic pre-hydrolysis of organic fraction of municipal solid waste to enhance anaerobic digestion. Biomass and Bioenergy, 127, https://doi.org/10.1016/j.biombioe.2019.105286
  68. Mozhiarasi, V. (2022). Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario. Chemosphere, 288, https://doi.org/10.1016/j.chemosphere.2021.132604
  69. Munir, M.T., Mohaddespour, A., Nasr, A.T., & Carter, S. (2021). Municipal solid waste-to-energy processing for a circular economy in New Zealand. Renewable and Sustainable Energy Reviews, 145, 111080. https://doi.org/10.1016/j.rser.2021.111080
  70. Nanda, S., & Berruti, F. (2021). A technical review of bioenergy and resource recovery from municipal solid waste. Journal of Hazardous Materials, 403, https://doi.org/10.1016/j.jhazmat.2020.123970
  71. Nasir, Z., Ahring, B.K., & Uellendahl, H. (2020). Enhancing the hydrolysis process in a dry anaerobic digestion process for the organic fraction of municipal solid waste. Bioresource Technology Reports, 11, https://doi.org/10.1016/j.biteb.2020.100542
  72. Nguyen, P.-D., Tran, N.-S. T., Nguyen, T.-T., Dang, B.-T., Le, M.-T. T., Bui, X.-T., Mukai, F., Kobayashi, H., & Ngo, H.H. (2020). Long-Term Operation Of The Pilot Scale Two-Stage Anaerobic Digestion Of Municipal Biowaste In Ho Chi Minh City. Science of the Total Environment, 766, https://doi.org/10.1016/j.scitotenv.2020.142562
  73. Panigrahi, S., & Dubey, B.K. (2019). A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renewable Energy, 143, 779-797. https://doi.org/10.1016/j.renene.2019.05.040
  74. Pattnaik, S., & Reddy, M.V. (2010). Assessment of Municipal Solid Waste management in Puducherry (Pondicherry), India. Resource Conservation and Recycling, 54(8), 512–520. https://doi.org/10.1016/j.resconrec.2009.10.008
  75. Prajapati, K.K., Yadav, M., Singh, R.M., Parikh, P., Pareek, N., & Vivekanand, V. (2021). An overview of municipal solid waste management in Jaipur city, India - Current status, challenges and recommendations. Renewable and Sustainable Energy Reviews, 152, https://doi.org/10.1016/j.rser.2021.111703
  76. Prashanth Kumar, C., Rena, Meenakshi, A., Khapre, A.S., Kumar, S., Anshul, A., Singh, L., Kim, S.-H., Lee, B.-D., & Kumar, R. (2019). Bio-Hythane Production from Organic Fraction of Municipal Solid Waste in Single and Two Stage Anaerobic Digestion Processes. Bioresource Technology, 294, https://doi.org/10.1016/j.biortech.2019.122220
  77. Priti, Mandal, K. (2019). Review on evolution of municipal solid waste management in India: practices, challenges and policy implications. Journal of Material Cycles and Waste Management, 21, 1263-1279. https://doi.org/10.1007/s10163-019-00880-y
  78. Pujara, Y., Govani, J., Patel, H.T., Pathak, P., Mashru, D., & Ganesh, P.S. (2023). Quantification of environmental impacts associated with municipal solid waste management in Rajkot city, India using Life Cycle Assessment. Environmental Advances, 12, https://doi.org/10.1016/j.envadv.2023.100364
  79. Qi, H., Cui, P., Liu, Z., Xu, Z., Yao, D., Wang, Y., Zhu, Z., & Yang, S. (2021). Conceptual design and comprehensive analysis for novel municipal sludge gasification-based hydrogen production via plasma gasifier. Energy Conversion and Management, 245, https://doi.org/10.1016/j.enconman.2021.114635
  80. Rafew, S.M., & Rafizul, I.M. (2021). Application of system dynamics model for municipal solid waste management in Khulna city of Bangladesh. Waste Management, 129, 1-19. https://doi.org/10.1016/j.wasman.2021.04.059
  81. Ramachandra, T.V., Bharath, H.A., Kulkarni, G., & Han, S.S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82, 1122–1136. http://dx.doi.org/10.1016/j.rser.2017.09.085
  82. Ramaiah, B.J., Ramana, G.V., & Datta, M. (2017). Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India. Waste Management, 68, 275–291. http://dx.doi.org/10.1016/j.wasman.2017.05.055
  83. Rao, N.D., Min, J., & Mastrucci, A. (2019). Energy requirements for decent living in India, Brazil and South Africa. Nature Energy, 4, 1025-1032. https://doi.org/10.1038/s41560-019-0497-9
  84. Rasapoor, M., Adl, M., Baroutian, S., Iranshahi, Z., & Pazouki, M. (2018). Energy performance evaluation of ultrasonic pretreatment of organic solid waste in a pilot-scale digester. Ultrasonic Sonochemistry, 51, 517-525. https://doi.org/10.1016/j.ultsonch.2018.04.021
  85. Rawat, R., Kumar, V., & Shukla, S. (2022). Route optimization of solid waste transportation in part of Lucknow- Capital city of Uttar Pradesh, India. Int. Res. J. Eng. Technol. 9, 3131-3134. https://www.academia.edu/download/91373265/IRJET_V9I5640.pdf
  86. Ren, B., Zhao, Y., Bai, H., Kang, S., Zhang, T., & Song, S. (2021). Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere, 267, https://doi.org/10.1016/j.chemosphere.2020.128900
  87. Roy, H., Alam, S.R., Bin-Mausd, R., Prantika, T.R., Pervez, M.N., Islam, M.S., & Naddeo, V. (2022). A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective. Sustainability, 14, https://doi.org/10.3390/su141610265
  88. Saebea, D., Ruengrit, P., Arpornwichanop, A., & Patcharavorachot, Y. (2020). Gasification of plastic waste for synthesis gas production. Energy Reports, 6, 202-207. https://doi.org/10.1016/j.egyr.2019.08.043
  89. Sailer, G., Eichermüller, J., Poetsch, J., Paczkowski, S., Pelz, S., Oechsner, H., & Müller, J. (2020). Optimizing anaerobic digestion of organic fraction of municipal solid waste (OFMSW) by using biomass ashes as additives. Waste Management, 109, 136–148. https://doi.org/10.1016/j.wasman.2020.04.047
  90. Sajid, M., Raheem, A., Ullah, N., Asim, M., Rehman, M.S.U., & Ali, N. (2022). Gasification of municipal solid waste: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews, 168, https://doi.org/10.1016/j.rser.2022.112815
  91. Saleh, A. R., Sudarmanta, B., Fansuri, H., & Muraza, O. (2020). Syngas production from municipal solid waste with a reduced tar yield by three-stages of air inlet to a downdraft gasifier. Fuel, 263, https://doi.org/10.1016/j.fuel.2019.116509
  92. Sebastian, R.M., Kumar, D., & Alappat, B.J. (2019). Easy Estimation of Mixed Municipal Solid Waste Characteristics from Component Analysis. Journal of Environmental Engineering, 145, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001588
  93. Shah, T.A., Lee, C.C., Orts, W.J., & Tabassum, R. (2019). Biological pretreatment of rice straw by ligninolytic Bacillus sp. strains for enhancing biogas production. Environmental Progress in Sustainable Energy, 38, https://doi.org/10.1002/ep.13036
  94. Shahid, M., Ullah, K., Imran, K., Mahmood, A., & Arentsen, M. (2021). LEAP simulated economic evaluation of sustainable scenarios to fulfill the regional electricity demand in Pakistan. Sustainable Energy Technologies and Assessments, 46, https://doi.org/10.1016/j.seta.2021.101292
  95. Shamurad, B., Gray, N., Petropoulos, E., Tabraiz, S., & Sallis, P. (2020). Improving the methane productivity of anaerobic digestion using aqueous extracts from municipal solid waste incinerator ash. Journal of Environmental Management, 260, https://doi.org/10.1016/j.jenvman.2020.110160
  96. Sharma, B.K., & Chandel, M.K. (2021). Life cycle cost analysis of municipal solid waste management scenarios for Mumbai, India. Waste Management, 124, 293–302. https://doi.org/10.1016/j.wasman.2021.02.002
  97. Sharma, K.D., & Jain, S. (2019). Overview of Municipal Solid Waste Generation, Composition, and Management in India. Journal of Environmental Engineering, 145. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001490
  98. Sharma, S., Basu, S., Shetti, N.P., Walvekar, P., & Aminabhavi, T.M. (2020). Waste-to-energy nexus: A sustainable development. Environmental Pollution, 267, https://doi.org/10.1016/j.envpol.2020.115501
  99. Soni, A., Das, P.K., & Kumar, P. (2022). A review on the municipal solid waste management status, challenges and potential for the future Indian cities. Environmental Development and Sustainability. https://doi.org/10.1007/s10668-022-02688-7
  100. Soomro, A.F., Abbasi, I. A., Ni, Z., Ying, L., & Liu, J. (2020). Influence of temperature on enhancement of volatile fatty acids fermentation from organic fraction of municipal solid waste: Synergism between food and paper components. Bioresource Technology, 304, https://doi.org/10.1016/j.biortech.2020.122980
  101. Srivastava, R., Krishna, V., & Sonkar, I. (2014). Characterization and management of municipal solid waste: a case study of Varanasi city, India. International Journal of Current Research and Review, 2, 10-16. https://www.researchgate.net/publication/304351399_Characterization_and_management_of_municipal_solid_waste_a_case_study_of_Varanasi_city_India
  102. Sun, Y., Qin, Z., Tang, Y., Huang, T., Ding, S., & Ma, X. (2021). Techno-environmental-economic evaluation on municipal solid waste (MSW) to power/fuel by gasification-based and incineration-based routes. Journal of Environmental Chemical Engineering, 9(5), https://doi.org/10.1016/j.jece.2021.106108
  103. Suresh, A., Alagusundaram, A., Senthil Kumar, P., Vo, D.-V.N., Christopher, F.C., Balaji, B., Viswanathan, V., & Sankar, S. (2021). Microwave pyrolysis of coal, biomass and plastic waste: a review. Environmental Chemistry Letters, 19, 3609-3629. https://doi.org/10.1007/s10311-021-01245-4
  104. Suriapparao, D.V., Gupta, A.A., Nagababu, G., Kumar, T.H., Sasikumar, J.S., & Choksi, H.H. (2022). Production of aromatic hydrocarbons from microwave-assisted pyrolysis of municipal solid waste (MSW). Process Safety and Environmental Protection, 159, 382-392. https://doi.org/10.1016/j.psep.2022.01.014
  105. Thakur, A., Kumari, S., Borker, S.S., Prashant, S.P., Kumar, A., & Kumar, R. (2021). Solid Waste Management in Indian Himalayan Region: Current Scenario, Resource Recovery, and Way Forward for Sustainable Development. Frontiers in Energy Research, 9, https://doi.org/10.3389/fenrg.2021.609229
  106. Tshemese, Z., Deenadayalu, N., Linganiso, L.Z., & Chetty, M. (2023). An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context. Applied System Innovation, 6, https://doi.org/10.3390/asi6010013
  107. Wang, J., Al-attab, K.A., & Heng, T.Y. (2023). Techno-economic and thermodynamic analysis of solid oxide fuel cell combined heat and power integrated with biomass gasification and solar assisted carbon capture and energy utilization system. Energy Conversion and Management, 280, https://doi.org/10.1016/j.enconman.2023.116762
  108. Wang, N., Qian, K., Chen, D., Zhao, H., & Yin, L. (2020). Upgrading gas and oil products of the municipal solid waste pyrolysis process by exploiting in-situ interactions between the volatile compounds and the char. Waste Management, 102, 380–390. https://doi.org/10.1016/j.wasman.2019.10.056
  109. Wang, W.-J., & You, X.-Y. (2021). Benefits analysis of classification of municipal solid waste based on system dynamics. Journal of Cleaner Production, 279, https://doi.org/10.1016/j.jclepro.2020.123686
  110. Wen, Y., Shi, Z., Wang, S., Mu, W., Jonsson, P.G., & Yang, W. (2021). Pyrolysis of raw and anaerobically digested organic fractions of municipal solid waste: Kinetics, thermodynamics, and product characterization. Chemical Engineering Journal, 415, 129064. https://doi.org/10.1016/j.cej.2021.129064
  111. Wong, S., Mah, A.X.Y., Nordin, A.H., Nyakuma, B.B., Ngadi, N., Mat, R., Amin, N.A.S., Ho, W.S., & Lee, T.H. (2020). Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environmental Science and Pollution Research, 27, 7757-7784. https://doi.org/10.1007/s11356-020-07933-y
  112. Xiao, S., Dong, H., Geng, Y., Francisco, M.-J., Pan, H., & Wu, F. (2020). An overview of the municipal solid waste management modes and innovations in Shanghai, China. Environmental Science and Pollution Research, 27, 29943-29953. https://doi.org/10.1007/s11356-020-09398-5
  113. Xie, Q., Wang, D., Han, Z., Tao, H., & Liu, S. (2023). Removal of carbon and dioxins from municipal solid waste incineration fly ash by ball milling and flotation methods. Journal of Material Cycles and Waste Management, 25, 62-73. https://doi.org/10.1007/s10163-022-01514-6
  114. Yadav, M., Joshi, C., Paritosh, K., Thakur, J., Pareek, N., & Masakapalli, S.K. (2022). Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metabolic Engineering, 69, 323-337. https://doi.org/10.1016/j.ymben.2021.11.014
  115. Yan, J., Liang, L., He, Q., Li, C., Xu, F., Sun, J., Goh, E.-B., Konda, N.V.S.N.M., Beller, H.R., Simmons, B.A., Pray, T.R., Thompson, V.S., Singh, S., & Sun, N. (2019). Methyl Ketones from Municipal Solid Waste Blends by One-Pot Ionic-Liquid Pretreatment, Saccharification, and Fermentation. ChemSusChem, 12, 4313-4322. https://doi.org/10.1002/cssc.201901084
  116. Yang, Y., Heaven, S., Venetsaneas, N., Banks, C.J., & Bridgwater, A.V. (2018a). Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion. Applied Energy, 213, 158-168. https://doi.org/10.1016/j.apenergy.2018.01.018
  117. Yang, Y., Zhang, Y., Omairey, E., Cai, J., Gu, F., & Bridgwater, A.V. (2018b). Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen. Journal of Cleaner Production, 187, 390–399. https://doi.org/10.1016/j.jclepro.2018.03.205
  118. Zamri, M.F.M.A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Fattah, I.M.R., & Mahlia, T.M.I. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, https://doi.org/10.1016/j.rser.2020.110637
  119. Zhang, S., Chen, Z., Lin, X., Wang, F., & Yan, J. (2020). Kinetics and fusion characteristics of municipal solid waste incineration fly ash during thermal treatment. Fuel, 279, 118410. https://doi.org/10.1016/j.fuel.2020.118410
  120. Zhang, Y., Li, C., Yuan, Z., Wang, R., Angelidaki, I., & Zhu, G. (2023). Syntrophy mechanism, microbial population, and process optimization for volatile fatty acids metabolism in anaerobic digestion. Chemical Engineering Journal, 452, https://doi.org/10.1016/j.cej.2022.139137
  121. Zhao, J., Xie, D., Wang, S., Zhang, R., Wu, Z., Meng, H., Chen, L., Wang, T., & Guo, Y. (2021). Hydrogen-rich syngas produced from co-gasification of municipal solid waste and wheat straw in an oxygen-enriched air fluidized bed. International Journal of Hydrogen Energy, 46(34), 18051–18063. https://doi.org/10.1016/j.ijhydene.2021.02.137
  122. Zhong, Y., He, J., Zhang, P., Zou, X., Pan, X., & Zhang, J. (2022). Effects of different particle size of zero-valent iron (ZVI) during anaerobic digestion: Performance and mechanism from genetic level. Chemical Engineering Journal, 435, https://doi.org/10.1016/j.cej.2022.134977
  123. Zhu, J., Wei, Z., Luo, Z., Yu, L., & Yin, K. (2021). Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: A review in the application-environment nexus. Environmental Pollution, 287, 117618. https://doi.org/10.1016/j.envpol.2021.117618