Document Type : Research Article

Authors

1 aDepartment of General Engineering, Institute of Chemical Technology, Mumbai.400019

2 Department of General Engineering, Institute of Chemical Technology, Mumbai.400019

10.30501/jree.2024.425816.1737

Abstract

The research aimed to create a composite material for the floaters used in floating solar power plants. High-density polyethylene (HDPE) was combined with 1, 1.5, 2, and 2.5% of carbon black (CB) and 1,2,and 3% of zinc oxide (ZnO). Mechanical tests were carried out after accelerated weathering for 311, 634, 954, 1403, and 2878 hours in dry (out of water) and wet (sample floating in water) conditions. HDPE loses tensile strength, impact resistance, and elongation at break after 634 hours and 954 hours of weathering. The Shore D hardness did not show any significant change. The best performance was observed in batches D4 and W4, which contain 2% CB and 1% ZnO, in dry and wet conditions. The SEM (scanning electron microscope) shows the external morphology of D1 and W1 (pure HDPE) and D4 and W4 (composite) and revealed that pure HDPE was more degraded compared to the composite. Thermal properties and stability were analyzed using TGA (Thermogravimetric analysis). A further increase in CB and ZnO will reduce the strength of the composite.It was found that HDPE with 2% CB and 1% ZnO was a good composite material for developing the floaters used in floating solar power plants.

Keywords

Main Subjects

         Abou-Kandil, A. I., Awad, A., & Mwafy, E. (2015). Polymer nanocomposites part 2: Optimization of zinc oxide/high-density polyethylene nanocomposite for ultraviolet radiation shielding. Journal of Thermoplastic Composite Materials, 28(11), 1583–1598. https://doi.org/10.1177/0892705714551242
 
         Aghabarari, B. (2016). Biodiesel Production Using Hybrid Amino Functionalized Chitosan-Carbon Support as Green Catalyst. Journal of Renewable Energy and Environment J, 3(2), 57–62.  https://doi.org/10.30501/jree.2016.70085
 
         Akella, A. K., Saini, R. P., & Sharma, M. P. (2009). Social, economical and environmental impacts of renewable energy systems. Renewable Energy, 34(2), 390–396. https://doi.org/10.1016/j.renene.2008.05.002
 
          Andrady, A. L. (1990). Weathering of polyethylene (LDPE) and enhanced photodegradable polyethylene in the marine environment. Journal of Applied Polymer Science, 39(2), 363–370. https://doi.org/10.1002/app.1990.070390213
 
         Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
 
         Andrady, A. L., Pegram, J. E., & Tropsha, Y. (1993). Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes. Journal of Environmental Polymer Degradation, 1(3), 171–179. https://doi.org/10.1007/BF01458025
 
          Audouin, L., Girois, S., Achimsky, L., & Verdu, J. (1998). Effect of temperature on the photooxidation of polypropylene films. Polymer Degradation and Stability, 60(1), 137–143. https://doi.org/10.1016/S0141-3910(97)00042-6
 
          Bajwa, D. S., Shojaeiarani, J., Liaw, J. D., & Bajwa, S. G. (2021). Role of hybrid nano-zinc oxide and cellulose nanocrystals on the mechanical, thermal, and flammability properties of poly (Lactic acid) polymer. Journal of Composites Science, 5(2). https://doi.org/10.3390/jcs5020043
 
         Bax, V., van de Lageweg, W. I., van den Berg, B., Hoosemans, R., & Terpstra, T. (2022). Will it float? Exploring the social feasibility of floating solar energy infrastructure in the Netherlands. Energy Research and Social Science, 89(February), 102569. https://doi.org/10.1016/j.erss.2022.102569
 
         Brandon, J., Goldstein, M., & Ohman, M. D. (2016). Long-term aging and degradation of microplastic particles: Comparing in situ oceanic and experimental weathering patterns. Marine Pollution Bulletin, 110(1), 299–308. https://doi.org/10.1016/j.marpolbul.2016.06.048
         Carmona, F., & Ravier, J. (2002). Electrical properties and mesostructure of carbon black-filled polymers. Carbon, 40(2), 151–156. https://doi.org/10.1016/S0008-6223(01)00166-X
 
         de Blécourt, M., Brumme, R., Xu, J., Corre, M. D., & Veldkamp, E. (2013). Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea brasiliensis) Plantations. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0069357
 
         Estrada-Núñez, S. A., González-Núñez, R., & Rodrigue, D. (2006). The effect of composition on impact properties of foamed HDPE/PP blends. Cellular Polymers, 25(6), 277–292. https://doi.org/10.1177/026248930602500601
 
         Fereshtehpour, M., Javidi Sabbaghian, R., Farrokhi, A., Jovein, E. B., & Ebrahimi Sarindizaj, E. (2021). Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures. Renewable Energy, 171, 1171–1187. https://doi.org/10.1016/j.renene.2020.12.005
 
         Flandin, L., Hiltner, A., & Baer, E. (2001). Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer. Polymer, 42(2), 827–838. https://doi.org/10.1016/S0032-3861(00)00324-4
 
         Gao, W., Li, Y., Zhao, J., Zhang, Z., & Tang, W. (2022). Influence of surface modification of zinc oxide on physical properties of high density polyethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653, 130000. https://doi.org/https://doi.org/10.1016/j.colsurfa.2022.130000
 
         Grigoriadou, I., Pavlidou, E., Paraskevopoulos, K. M., Terzopoulou, Z., & Bikiaris, D. N. (2018). Comparative study of the photochemical stability of HDPE/Ag composites. Polymer Degradation and Stability, 153, 23–36. https://doi.org/10.1016/j.polymdegradstab.2018.04.016
 
         Hokkanen, S., Bhatnagar, A., & Sillanpää, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 91, 156–173. https://doi.org/10.1016/j.watres.2016.01.008
 
         It, A., & Table, D. (2015). Uv Degradation & Stabilization of Polymers & Rubbers. Handbook of UV Degradation and Stabilization, 177–292. https://doi.org/10.1016/b978-1-895198-86-7.50009-7
 
         Jassim, K. A., Jassim, W. H., & Mahdi, S. H. (2017). The effect of sunlight on medium density polyethylene Water pipes. Energy Procedia, 119(July), 650–655. https://doi.org/10.1016/j.egypro.2017.07.091
 
         Kamalian, P., Khorasani, S. N., Abdolmaleki, A., Karevan, M., Khalili, S., Shirani, M., & Neisiany, R. E. (2020). Toward the development of polyethylene photocatalytic degradation. Journal of Polymer Engineering, 40(2), 181–191. https://doi.org/10.1515/polyeng-2019-0230
 
         Koriem, A., Ollick, A. M., & Elhadary, M. (2021). The effect of artificial weathering and hardening on mechanical properties of HDPE with and without UV stabilizers. Alexandria Engineering Journal, 60(4), 4167–4175. https://doi.org/10.1016/j.aej.2021.03.024
 
          Kumar, M., Mohammed Niyaz, H., & Gupta, R. (2021). Challenges and opportunities towards the development of floating photovoltaic systems. Solar Energy Materials and Solar Cells, 233(January), 111408. https://doi.org/10.1016/j.solmat.2021.111408
 
         Liang, J. Z., & Yang, Q. Q. (2009). Mechanical properties of carbon black-filled high-density polyethylene antistatic composites. Journal of Reinforced Plastics and Composites, 28(3), 295–304. https://doi.org/10.1177/0731684407081376
 
          Lu, P., & Hsieh, Y. Lo. (2010). Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 82(2), 329–336. https://doi.org/10.1016/j.carbpol.2010.04.073
 
          Matuana, L. M., Jin, S., & Stark, N. M. (2011). Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer. Polymer Degradation and Stability, 96(1), 97–106. https://doi.org/10.1016/j.polymdegradstab.2010.10.003
 
         Mendes, L. C., Rufino, E. S., De Paula, F. O. C., & Torres, A. C. (2003). Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro City. Polymer Degradation and Stability, 79(3), 371–383. https://doi.org/10.1016/S0141-3910(02)00337-3
 
          Nayak, N. C., Achary, P. G. R., Das, S., & Begum, S. (2014). Effect of carbon black on microcellular behavior of ethylene-octene copolymer vulcanizates. Cellular Polymers, 33(2), 71–86. https://doi.org/10.1177/026248931403300201
 
          Noer, Z., Mn, N., Bukit, N., Juwairiah, Susilawati, & Ikhwanuddin. (2018). Characterization of low-density polyethylene (LDPE)/carbon black (CB) nanocomposite-based packaging material. Journal of Physics: Conference Series, 1120(1). https://doi.org/10.1088/1742-6596/1120/1/012066
 
          Ovalı, S., & Sancak, E. (2022). Investigating the effect of the aging process on LDPE composites with UV protective additives. Journal of Thermoplastic Composite Materials, 35(11), 1921–1939. https://doi.org/10.1177/0892705720941908
 
         Painuly, J. P. (2001). Painuly 2000.pdf. 24, 73–89.
         Park, S. J., Seo, M. K., & Nah, C. (2005). Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings. Journal of Colloid and Interface Science, 291(1), 229–235. https://doi.org/10.1016/j.jcis.2005.04.103
 
         Parvin, N., Ullah, M. S., Mina, M. F., & Gafur, M. A. (2013). Structures and mechanical properties of talc and carbon black reinforced high density polyethylene composites : Effects of organic and inorganic fillers. Journal of Bangladesh Academy of Sciences, 37(1), 11–20. https://doi.org/10.3329/jbas.v37i1.15675
 
         Pavličević, J., Špírková, M., Bera, O., Jovičić, M., Pilić, B., Baloš, S., & Budinski-Simendić, J. (2014). The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Composites Part B: Engineering, 60, 673–679. https://doi.org/10.1016/j.compositesb.2014.01.016
 
          Rasouli, D., Dintcheva, N. T., Faezipour, M., La Mantia, F. P., Mastri Farahani, M. R., & Tajvidi, M. (2016). Effect of nano zinc oxide as UV stabilizer on the weathering performance of wood-polyethylene composite. Polymer Degradation and Stability, 133, 85–91. https://doi.org/10.1016/j.polymdegradstab.2016.08.004
 
          Rauf, H., Gull, M. S., & Arshad, N. (2020). Complementing hydroelectric power with floating solar PV for daytime peak electricity demand. Renewable Energy, 162, 1227–1242. https://doi.org/10.1016/j.renene.2020.08.017
 
          Razeghi Jahromi, D., Minoofar, A., Ghorbani, G., Gholami, A., Ameri, M., & Zandi, M. (2023). Harnessing Sunlight on Water: A Comprehensive Analysis of Floating Photovoltaic Systems and their Implications Compared to Terrestrial. Journal of Renewable Energy and Environment. https://doi.org/10.30501/jree.2023.400301.1601
 
          Reese, M. O., Gevorgyan, S. A., Jørgensen, M., Bundgaard, E., Kurtz, S. R., Ginley, D. S., Olson, D. C., Lloyd, M. T., Morvillo, P., Katz, E. A., Elschner, A., Haillant, O., Currier, T. R., Shrotriya, V., Hermenau, M., Riede, M., Kirov, K. R., Trimmel, G., Rath, T., … Krebs, F. C. (2011). Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Materials and Solar Cells, 95(5), 1253–1267. https://doi.org/10.1016/j.solmat.2011.01.036
 
          Rojas, K., Canales, D., Amigo, N., Montoille, L., Cament, A., Rivas, L. M., Gil-Castell, O., Reyes, P., Ulloa, M. T., Ribes-Greus, A., & Zapata, P. A. (2019). Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Composites Part B: Engineering, 172(January),173–178. https://doi.org/10.1016/j.compositesb.2019.05.054
 
         Sahu, A. K., & Sudhakar, K. (2019). Effect of UV exposure on bimodal HDPE floats for floating solar application. Journal of Materials Research and Technology, 8(1), 147–156. https://doi.org/10.1016/j.jmrt.2017.10.002
 
         Sahu, A. K., Sudhakar, K., & Sarviya, R. M. (2019). Effect of seawater on properties of hdpe material used for floating solar applications. International Journal of Mechanical and Production Engineering Research and Development, 9(4), 253–262. https://doi.org/10.24247/ijmperdaug201926
 
          Sahu, A. K., Sudhakar, K., & Sarviya, R. M. (2020). U.V light effect on the mechanical behaviour of HDPE/Carbon black composites. IOP Conference Series: Materials Science and Engineering, 788(1). https://doi.org/10.1088/1757-899X/788/1/012054
 
          Sahu, A., Yadav, N., & Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815–824. https://doi.org/10.1016/j.rser.2016.08.051
 
         Shah, V. (2006). Handbook of Plastics Testing and Failure Analysis: Third Edition. In Handbook of Plastics Testing and Failure Analysis: Third Edition. https://doi.org/10.1002/0470100427
 
          Simões, D. N., Pittol, M., Tomacheski, D., Ribeiro, V. F., & Santana, R. M. C. (2017). Thermoplastic elastomers containing zinc oxide as antimicrobial additive under thermal accelerated ageing. Materials Research, 20(Table 1), 325–330. https://doi.org/10.1590/1980-5373-mr-2016-0790
 
          Sit, M., Dashatan, S., Zhang, Z., Dhakal, H. N., Khalfallah, M., Gamer, N., & Ling, J. (2023). Inorganic Fillers and Their Effects on the Properties of Flax/PLA Composites after UV Degradation. Polymers, 15(15). https://doi.org/10.3390/polym15153221
 
         Types, A. A. (n.d.). Polypropylene / ZnO Nanocomposites : Mechanical Properties , Photocatalytic Dye Degradation , and Antibacterial Property (Vol. 4, Issue 4).
 
          Vahidi, G., Bajwa, D. S., Shojaeiarani, J., & Stark, N. M. (2022). Experimental investigation into the direct feeding of coupling agent, cellulose nanocrystals, and nano zinc oxide in high-density polyethylene. Composites Part C: Open Access, 8(June), 100287. https://doi.org/10.1016/j.jcomc.2022.100287
 
         Vidakis, N., Petousis, M., Michailidis, N., Mountakis, N., Argyros, A., Spiridaki, M., Moutsopoulou, A., Papadakis, V., & Charitidis, C. (2023). High-Density Polyethylene/Carbon Black Composites in Material Extrusion Additive Manufacturing: Conductivity, Thermal, Rheological, and Mechanical Responses. Polymers, 15(24). https://doi.org/10.3390/polym15244717
 
         White, J. R., & Turnbull, A. (1994). Weathering of polymers: mechanisms of degradation and stabilization, testing strategies and modelling. Journal of Materials Science, 29(3), 584–613. https://doi.org/10.1007/BF00445969
 
          Zhao, H., & Li, R. K. Y. (2006). A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer, 47(9), 3207–3217. https://doi.org/https://doi.org/10.1016/j.polymer.2006.02.089