Document Type: Research Article


1 Smart Microgrid Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

2 Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.


The effective utilization of wind energy conversion system )WECS( is one of the most crucial concerns for the development of renewable energy systems. In order to achieve appropriate wind power, different pitch angle methods are used. Recurrent Adaptive Neuro-Fuzzy Inference System (RANFIS) is utilized in this paper in a new effective design to improve the performance of classical and adaptive Proportional Integral (PI) controllers applied for the pitch control purposes. Adaptive-online performance and high robustness coverage are the main advantages of the suggested controller. The effectiveness of the proposed method is verified by a simplified two-mass wind turbine model and a detailed aero-elastic wind turbine simulator (FAST7). At any given wind speed, the proposed controller has outperformed PI, Adaptive Neuro-Fuzzy Inference System (ANFIS), and RANFIS based controllers, reducing the mechanical stress of drive train while presenting suitable aerodynamic power tracking and maintaining the rotational speed of the rotor under the rated value.


1.     Lyu, X., Zhao, J., Jia, Y., Xu, Z. and Wong, K.P., "Coordinated control strategies of PMSG-based wind turbine for smoothing power fluctuations", IEEE Transactions on Power Systems, Vol. 34, No. 1, (2019), 391-401. (doi:10.1109/TPWRS.2).

2.     Shair, J., Xie, X., Wang, L., Liu, W., He, J. and Liu, H., "Overview of emerging subsynchronous oscillations in practical wind power systems", Renewable and Sustainable Energy Reviews, Vol. 99, (2019), 159-168. (doi:10.1016/j.rser .2018.09.047).

3.     Jafari, A. and Shahgholian, G., "Analysis and simulation of a sliding mode controller for mechanical part of a doubly-fed induction generator based wind turbine", IET Generation, Transmission and Distribution, Vol. 11, No. 10, (2017), 2677-2688. (doi:10.1049/iet-gtd.2016.1969).

4.     Shonhiwa, C. and Makaka, G., "Concentrator augmented wind turbines: A review", Renewable and Sustainable Energy Reviews, Vol. 59, (2016), 1415-1418. (doi:10.1016/j. rser.2016.01.067).

5.     Shahgholian, G. and Ebrahimi-Salary, M., "Effect of load shedding strategy on interconnected power systems stability when a blackout occurs", International Journal of Computer and Electrical Engineering, Vol. 4, No. 2, (2012), 212-216. (doi:10.7763/IJCEE. 2012.V4.481).

6.     Shahgholian, G., "Review of power system stabilizer: Application, modeling, analysis and control strategy", International Journal on Technical and Physical Problems of Engineering, Vol. 5, No. 3, (2013), 41-52.

7.     Bertašienė, A. and Azzopardi, B., "Synergies of wind turbine control techniques", Renewable and Sustainable Energy Reviews, Vol. 45, (2015), 336-342. (doi:10.1016/ j.rser.2015.01.063).

8.     Datta, U., Shi, J. and Kalam, A., "Primary frequency control of a microgrid with integrated dynamic sectional droop and fuzzy based pitchanglecontrol", International Journal of Electrical Power and Energy Systems, Vol. 111, (2019), 248-259. (doi: 10.1016/j.ijepes. 2019.04.001).

9.     Mozafarpoor-Khoshrodi, S.H. and Shahgholian, G., "Improvement of perturbing and observe method for maximum power point tracking in wind energy conversion system using the fuzzy controller", Energy Equipment and Systems, Vol. 4, No. 2, (2016), 111-122. (doi: 10.22059/EES.2016 .23031).

10.   Song, D., Yang, J., Su, M., Liu, A., Cai, Z., Liu, Y. and Joo, Y.H., "A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation", Energy, Vol. 138, (2017), 816-830. (doi:10.1016/ 2017.07.033).

11.   Johnson, S.J., Larwood, S., McNerney, G. and Dam, C.P., "Balancing fatigue damage and turbine performance through innovative pitch control algorithm", Wind Energy, Vol. 15, No. 5, (2012), 665-677. (doi:10.1002/we.495).

12.   Yang, B., Jiang, L., Wang, L., Yao, W. and Wu, Q.H., "Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine", International Journal of Electrical Power and Energy Systems, Vol. 74, (2016), 429-436. (doi:10.1016/j.ijepes.2015. 07.036).

13.   Yang, G. and Hao, Z., "Fuzzy self-adaptive PID control of the variable speed constant frequency variable-pitch wind turbine system", Proceeding of the IEEE/ICSSE, (2014), 124-127. (doi:10.1109/ICSSE. 2014.6887918).

14.   Shahgholian, G. and Izadpanahi, N., "Improving the performance of wind turbine equipped with DFIG using STATCOM based on input-output feedback linearization controller", Energy Equipment and Systems, Vol. 4, No. 1, (2016), 65-79. (doi:10.22059/EES.2016.20128).

15.   Faiz, J., Hakimi-Tehrani, A. and Shahgholian, G., "Current control techniques for wind turbines: A review", Journal of Electromotion, Vol. 19, No. 3-4, (2012), 151-168.

16.   Abu Hussein, A. and Hasan Ali, M., "Comparison among series compensators for transient stability enhancement of doubly fed induction generator based variable speed wind turbines", IET Renewable Power Generation, Vol. 10, No. 1, (2016), 116-126. (doi:10.1049/ iet-rpg.2015.0055).

17.   Corradini, M.L., Ippoliti, G. and Orlando, G., "Fully sensorless robust control of variable-speed wind turbines for efficiency maximization", Automatica, Vol. 49, No. 10, (2013), 3023-3031. (doi:10.1016/ j.automatica.2013.07.028).

18.   Murdoch, A., Barton, R.S., Winkelman, J.R. and Javid, S.H., "Control design and performance analysis of a 6 MW wind turbine-generator", IEEE Transactions on Power Apparatus and Systems, Vol. 102, No. 5, (1983), 1340-1347. (10.1109/TPAS.1983.318083).

19.   Tang, X., Yin, M., Shen, C., Xu, Y., Dong, Z.Y. and Zou, Y., " Active power control of wind turbine generators via coordinated rotor speed and pitch angle regulation", IEEE Transactions on Sustainable Energy, Vol. 10, No. 2, (2019), 822-832. (doi:10. 1109/TSTE. 2018.2848923).

20.   Avello, A.J., Al-Hadithi, B.M., Garcia, M.I.G. and Rubio, J.M.L., "Difference equation matrix model (DEMM) for the control of wind turbines", Wind Energy, Vol. 17, No. 1, (2014), 57-74. (doi:10.1049/ iet-rpg.2015.0239).

21.   Abulanwar, S., Hu, W., Chen, Z. and Iov, F., "Adaptive voltage control strategy for variable-speed wind turbine connected to a weak network", IET Renewable Power Generation, Vol. 10, No. 2, (2016), 238-249. (doi:10.1049/iet -rpg.2015.0239).

22.   Viudez-Moreiras, D., Martin, I. and Martin-Sanchez, J.M., "A new pitch angle adaptive control design", Proceeding of the IEEE/ICUAS, Orlando, FL. (2014), 928-935. (doi:10.1109/ ICUAS.2014.6842342).

23.   Soliman, M., Malik, O.P. and Westwick, D.T., "Multiple model predictive control for wind turbines with doubly fed induction generators", IEEE Transactions on Sustainable Energy, Vol. 2, No. 3, (2011), 215-225. (doi:10.1109/TSTE.2011. 2153217).

24.   Njiri, J.G. and Söffker, D., "State-of-the-art in wind turbine control: Trends and challenges", Renewable and Sustainable Energy Reviews, Vol. 60, (2016), 377-393. (doi:10.1016/ j.rser.2016.01.110).

25.   Boukhezzar, B. and Siguerdidjane, H., "Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization", Energy Conversion and Management, Vol. 50, No. 4, (2009), 885-892. (doi:10.1016/j.enconman.2009.01.011).

26.   Hang, J., Zhang, J. and Cheng, M., "Application of multi-class fuzzy support vector machine classifier for fault diagnosis of wind turbine", Fuzzy Sets and Systems, Vol. 297, (2016), 128-140. (doi: 10.1016/j.fss.2015.07.005).

27.   Suganthi, L., Iniyan, S. and Samuel, A.A., "Applications of fuzzy logic in renewable energy systems: A review", Renewable and Sustainable Energy Reviews, Vol. 48, (2015), 585-607. (doi:10.1016/j.rser. 2015.04.037).

28.   El-Hawary, M.E.,Fuzzy theory in electric power systems, Wiley-IEEE Press eBook Chapters, (1998), 7-11.

29.   Musyafa’, A., Harika, A., Negara, I.M.Y. and Robandi, I., "Pitch angle control of variable low rated speed wind turbine using fuzzy logic controller", International Journal of Engineering and Technology, Vol. 10, No. 5, (2010), 22-25. (doi:10.1109/DRPT.2008.4523867).

30.   Van, T.L., Nguyen, T.H. and Lee, D.C., "Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems", IEEE Transactions on Energy Conversion, Vol. 30, No. 2, (2015), 578-587. (doi:10.1109/TEC. 2014.2379293).

31.   Lin, W., Hong, C., Ou, T. and Chiu, T., "Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN", Energy Conversion and Management, Vol. 52, No. 2, (2011), 1244-1251. (doi:10.1016/j.enconman. 2010.09.020).

32.   Asghar, A.B. and Liu, X., "Estimation of wind turbine power coefficient by adaptive neuro-fuzzy methodology", Neurocomputing, Vol. 238, (2017), 227-233. (doi:10.1016/j. neucom.2017.01.058).

33.   Hosseini, E. and Shahgholian, G., "Output power levelling for DFIG wind turbine system using intelligent pitch angle control", Automatika, Vol. 58, No. 4, (2017), 363-374. (doi:10.1080/00051144. 2018.1455017).

34.   Lin, F.J., Hwang, J.C., Tan, K.H., Lu, Z.H. and Chang, Y.R., "Intelligent control of doubly-fed induction generator systems using PIDNNs", ASIAN Journal of Control, Vol. 14, No. 3, (2012), 768-783. (doi:10.1002/asjc.426).

35.   Shahgholian, G., "Modeling and simulation of a two-mass resonant system with speed controller", International Journal of Infoarmation and Electronics Engenieering, Vol. 3, No. 4, (2013), 365-369. (doi: 10.7763/IJIEE.2013. V3.355).

36.   Guo, W., Xiao, L. and Dai, S., "Fault current limiter-battery energy storage system for the doubly-fed induction generator: analysis and experimental verification", IET Generation, Transmission and Distribution, Vol. 10, No. 3, (2016), 653-660. (doi:10.1049/iet-gtd.2014.1158).

37.   Yang, L., Xu, Z., Ostergaard, J. and Dong, Z.Y., "Advanced control strategy of DFIG wind turbines for power system fault ride through", IEEE Transactions on Power Systems, Vol. 27, No. 2, (2011), 713-722. (doi:10.1109/TPWRS. 2011.2174387).

38.   Song, Y.D., Dhinakaran, B. and Bao, X.Y.,"Variable speed control of wind turbines using nonlinear and adaptive algorithms", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 85, No. 3, (2000), 293-308. (doi:10.1016/S0167-6105(99)00131-2).

39.   Hu, L., Xue, F., Qin, Z., Shi, J., Qiao, W., Yang, W. and Yang, T., "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system", AppliedEnergy, Vol. 248, (2019), 567-575. (doi: 10.1016/ j.apenergy.2019.04.073).

40.   Lin, W.M., Hong, C.M., Ou, T.C. and Chiu, T.M., "Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN", Energy Conversion and Management, Vol. 52, No. 2, (2011), 1244-1251. (doi:10.1016/j.enconman.2010.09.020).

41.   Singh, M. and Chandra, A., "Application of adaptive network-based fuzzy inference system for sensorless control of PMSG-based wind turbine with nonlinear-load-compensation capabilities", IEEE Transactions on Power Electronics, Vol. 26, No. 1, (2011), 165-175. (doi:10.1109/ TPEL.2010. 2054113).

42.   Soliman, M., Malik, O.P. and Westwick, D.T., "Multiple model multiple-input multiple-output predictive control for variable speed variable pitch wind", IET Renewable Power Generation, Vol. 5, No. 2, (2011), 124-136. (doi:10.1049/iet-rpg.2009.0137).

43.   Muhando, E.B., Senjyu, T., Uehara, A., Funabashi, T. and Kim, C.-H., "LQG design for megawatt-class WECS with DFIG based on functional model’s fidelity prerequisites", IEEE Transactions on Energy Conversion, Vol. 24, No. 4, (2009), 893-904. (doi:10.1109/TEC.2009. 2025338).

44.   Aghadavoodi, E. and Shahgholian, G., "A new practical feed-forward cascade analyze for close loop identification of combustion control loop system through RANFIS and NARX", Applied Thermal Engineering, Vol. 133, (2018), 381-395. (doi: 10.1016/j.applthermaleng.2018. 01.075).

45.   Jiang, F., Dong, L., Dai, Q. and Charles Nobes, D., "Using wavelet packet denoising and ANFIS networks based on COSFLA optimization for electrical resistivity imaging", Fuzzy Sets and Systems, Vol. 337, (2018), 93-112. (doi: 10.1016/j.fss.2017.07.009).

46.   Boutoubat, M., Mokrani, L. and Machmoum, M., "Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement", Renewable Energy, Vol. 50, (2013), 378-386. (doi:10.1016/ j.renene.2012.06.058).

47.   Shahgholian, G. and Movahedi, A., "Coordinated control of TCSC and SVC for system stability enhancement using ANFIS method", International Review on Modelling and Simulations, Vol. 4, No. 5, (2011), 2367-2375.

48.   Wei, M., Bai, B., Sung, A.H., Liu, Q., Wang, J. and Cather, M.E., "Predicting injection profiles using ANFIS", Information Sciences, Vol. 177, No. 20, (2007), 4445-4461. (doi:10.1016/j.ins.2007.03.021).

49.   Fattahi, H., "Adaptive neuro fuzzy inference system based on fuzzy c-means clustering algorithm, a technique for estimation of tbm penetration rate", International Journal of Optimization in Civil Engineering, Vol. 6, No. 2, (2016), 159-171.

50.   Sheikhan, M., Shahnazi, R. and Yousefi, A.N., "An optimal fuzzy PI controller to capture the maximum power for variable-speed wind turbines", Neural Computation and Application, Vol. 23, No. 5, (2012), 1359-1368. (doi: 10.1016/j. energy.2016.03.095).