Document Type : Research Article


Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.


The renewable energy can be utilized to satisfy the energy demand. Moreover, the solar energy as the most abundant energy resource among renewable energies plays a crucial role to provide the energy demand. The BIPV (building integrated photovoltaics) systems can be considered to supply the required energy demand from renewable sources. The essential advantage of BIPV systems is that they can be utilized as building component such as roof, window, shading systems and building façade and they can generate electricity simultaneously. Even though the photovoltaic technologies have been improved within past few years, however the utilization of the BIPV systems will be considered expensive. For this reason, the payback period calculation is considered a vital parameter in evaluating the BIPV systems. In this study, the overall energy consumption for producing one m2 of a mono-crystalline photovoltaic module is calculated 1334 kWh. Additionally, the photovoltaic module data for three companies were investigated and the annual energy productions for one m2 of each company’s product were obtained. The results showed that the average energy payback time for 270 and 280 watt modules are 5.565 and 5.254 respectively. Moreover, the energy payback time for 290, 325 and 340 watt modules were calculated 4.903, 5.437 and 4.965 respectively.


Main Subjects

1., (accessed March 8, 2018).
2.     International Energy Agency (IEA), Medium-Term renewable energy market report 2016, Executive summary, (2016), 13. (doi:10.1007/ s13280-010-0059-7).
3.     Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Nasrin, R. and Rivai, A., "Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM", Renewable Energy, (2019). (doi:10.1016/j.renene.2019.05.041).
4.     Good, C., Andresen, I. and Hestnes, A.G., "Solar energy for net zero energy buildings – A comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems", Solar Energy, Vol. 122, (2015), 986-996. (doi:10.1016/J.SOLENER.2015.10.013).
5.     Huide, F., Xuxin, Z., Lei, M., Tao, Z., Qixing, W. and Hongyuan, S., "A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems", Energy Conversion and Management, Vol. 140, (2017), 1-13. (doi:10.1016/J.ENCONMAN.2017.02.059).
6.     Bauer, M., Mösle, P. and Schwarz, M., Green building : Guidebook for sustainable architecture, (2010). (doi:10.1007/9783642006357).
7.     Jadhav, N.Y., Green and smart buildings, Advanced technology options, Springer, Singapore, (2016). (doi:10.1007/978-981-10-1002-6).
8., (accessed March 9, 2018).
9.     Parida, B., Iniyan, S. and Goic, R., "A review of solar photovoltaic technologies", Renewable and Sustainable Energy Reviews, Vol. 15, (2011), 1625-1636. (doi:10.1016/j.rser.2010.11.032).
10.   Elminshawy, N.A.S., Mohamed, A.M.I., Morad, K., Elhenawy, Y. and Alrobaian, A.A., "Performance of PV panel coupled with geothermal air cooling system subjected to hot climatic", Applied Thermal Engineering, (2019). (doi:10.1016/j.applthermaleng.2018.11.027).
11.   Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A. and Javaid, N., "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials nanofluids system [2020]", Renewable Energy, Vol. 145, No. 10, (2019), 282-293.
12.   Michael, J.J., Iniyan, S. and Goic, R., "Flat plate solar photovoltaic-thermal (PV/T) systems: A reference guide", Renewable and Sustainable Energy Reviews,Vol. 51, (2015), 62-88. (doi:10.1016/ j.rser.2015.06.022)
13.   Dell, J., Tierney, S., Franco, G., Newell, R.G., Richels, R., Weyant, J. and Wilbanks, T.J., "Chapter 4: Energy supply and use, Climate change impacts in the United States: The third national climate assessment", Melillo, J.M., Richmond, T.C. and Yohe, G.W. Eds., U.S. Global Change Research Program, (2014), 113-129. (doi:10.7930/ J0BG2KWD).
14.   Freese, B., Clemmer, S. and Nogee, A., "Coal power in a warming world: A sensible transition to cleaner energy options", Cambridge, Union of Concerned Scientists, (2008).
15.   Gronlund, L., Lochbaum, D. and Lyman, E., "Nuclear power in a warming world: Assessing the risks, addressing the challenges", Union of Concerned Scientists, (2007).
16.   Averyt, K., Fisher, J., Huber-Lee, A., Lewis, A., Macknick, J., Madden, N., Rogers, J. and Tellinghuisen, S., "Freshwater use by U.S. power plants: Electricity’s thirst for a precious resource", (2011). (
17.   Haynes, W.M., Lide, D.R. and Bruno, T., CRC Handbook of chemistry and physics, 97th Edition, CRC Press, (2017). (doi:10.1136/oem. 53.7.504).
18.   Gul, M., Kotak, Y. and Muneer, T., "Review on recent trend of solar photovoltaic technology", Energy Exploration & Exploitation, Vol. 34, (2016), 485-526. (doi:10.1177/0144598716650552).
19.   Tiwari, G.N., Mishra, R.K. and Solanki, S.C., "Photovoltaic modules and their applications: A review on thermal modelling", Applied Energy, Vol. 88, (2011), 2287-2304. (doi:10.1016/J.APENERGY. 2011.01.005).
20.   Zhang, X., Zhao, X., Smith, S., Xu, J. and Yu, X., "Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies", Renewable and Sustainable Energy Reviews, Vol. 16, (2012), 599-617. (doi:10.1016/J.RSER.2011.08.026).
21.   Barnett, A.M., Rand, J.A., Hall, R.B., Bisaillon, J.C., Delledonne, E.J., Feyock, B.W., Ford, D.H., Ingram, A.E., Mauk, M.G., Yaskoff, J.P. and Sims, P.E., "High current, thin silicon-on-ceramic solar cell", Solar Energy Materials and Solar Cells, Vol. 66, (2001), 45-50. (doi:10.1016/S0927-0248(00)00157-4).
22.   Wu, L., Tian, W. and Jiang, X., "Silicon-based solar cell system with a hybrid PV module", Solar Energy Materials and Solar Cells, Vol. 87, (2005), 637-645. (doi:10.1016/j.solmat.2004.09.018).
23.   Li, G., Zhu, R. and Yang, Y.,"Polymer solar cells", Nature Photonics, Vol. 6, No. 3, (2012), 153-161. (doi:10.1038/nphoton.2012.11).
24.   Krebs, F.C., Alstrup, J., Spanggaard, H., Larsen, K. and Kold, E., "Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate", Solar Energy Materials and Solar Cells, Vol. 83, (2004), 293-300. (doi:10.1016/j.solmat.2004.02.031).
25.   Nazeeruddin, M.K., Baranoff, E. and Grätzel, M., "Dye-sensitized solar cells: A brief overview", Solar Energy, Vol. 85, (2011), 1172-1178. (doi:10.1016/j.solener.2011.01.018).
26.   Kalyanasundaram, K., Dye-sensitized solar cells, CRC Press, (2010). ( sensitized Solar Cells/ Kalyanasundaram/p/book/9781439808665) (accessed March 8, 2018).
27.   Humm, O. and Toggweiler, P., Photovoltaik und architektur – Die integration von solarzellen in gebäudehüllen, Ed. Bundesamt für energiewirtschaft (BEW) und Bundesamt für konjunkturfragen (BfK), Basel, Harwood Academic Publishers, (1993).
28.   Thomas, H.P. and Pierce, L.K., "Building integrated PV and PV /hybrid oroducts – The PV:BONUS experience", Proceedings of NCPV Program Review Meeting, Lakewood, Colorado, (2001).
29.   Eiffert, P. and Kiss, G.J., "Building-integrated photovoltaic designs for commercial and institutional structures A sourcebook for architects", National Renewable Energy Laboratory (NREL), Report BERL/BK-520-25272, Oakridge, TN, (2000), 92. (doi: docs/fy00osti/25272.pdf).
30.   Kanta, K., Pitchumania, R., Shukla, A. and Sharma, A., "Analysis and design of air ventilated building integrated photovoltaic BIPV system incorporating phase change materials", Energy Conversion and Management, Vol. 196, (2019), 149-164.
31.   Schiermeier, Q., "Clean-energy credits tarnished", Nature, Vol. 477, (2011), 517-518. (doi:10.1038/477517a).
32.   Fraile, S.E., Montoro, D., Despotou, E., Latour, M., Slusarz, T., Weiss, I., Caneva, S., Helm, P., Goodal, J. and Fintikakis, N., "PV diffusion in the building sector", Proceedings of the 23th European Photovoltaic Solar Energy Conference and Exhibition, (2008), 3300-3304.
33.   Taleb, H.M. and Pitts, A.C., "The potential to exploit use of building-integrated photovoltaics in countries of the Gulf Cooperation Council", Renewable Energy, Vol. 34, (2009), 1092-1099. (doi:10.1016/j.renene. 2008.07.002).
34.   Zhai, X.Q., Wang, R.Z., Dai, Y.J., Wu, J.Y. and Ma, Q., "Experience on integration of solar thermal technologies with green buildings", Renewable Energy, Vol. 33, (2008), 1904-1910. (doi:10.1016/ j.renene.2007.09.027).
35.   Iqbal, I. and Al-Homoud, M.S., "Parametric analysis of alternative energy conservation measures in an office building in hot and humid climate", Building and Environment, Vol. 42, (2007), 2166-2177. (doi:10.1016/j.buildenv.2006.04.011.
36.   Lee, E.S. and Selkowitz, S.E., "The New York Times headquarters daylighting mockup: Monitored performance of the daylighting control system", Energy and Buildings, Vol. 38, (2006), 914-929. (doi:10.1109/LPT.2006.872290).
37.   Park, K.E., Kang, G.H., Kim, H.I., Yu, G.J. and Kim, J.T., "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module", Energy, Vol. 35, (2010), 2681-2687. (doi:10.1016/
38.   Jelle, B.P., Breivik, C. and Drolsum Røkenes, H., "Building integrated photovoltaic products: A state-of-the-art review and future research opportunities", Solar Energy Materials & Solar Cells, Vol. 100, (2012), 69-96. (doi:10.1016/j.solmat.2011.12.016).
39.   Ng, P.K. and Mithraratne, N., "Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics",Renewable and Sustainable Energy Reviews, Vol. 31, (2014), 736-745. (doi:10.1016/j.rser.2013.12.044).
40.   Wang, W., Liu, Y., Wu, X., Xu, Y., Yu, W., Zhao, C. and Zhong, Y., "Environmental assessments and economic performance of BAPV and BIPV systems in Shanghai", Energy and Buildings, Vol. 130, (2016), 98-106. (doi:10.1016/j.enbuild.2016.07.066).
41.   Peng, C., Huang, Y. and Wu, Z., "Building-integrated photovoltaics (BIPV) in architectural design in China",Energy and Buildings, Vol. 43, (2011), 3592-3598. (doi:10.1016/j.enbuild.2011.09.032).
42.   Li, D., Liu, G. and Liao, S., "Solar potential in urban residential buildings", Solar Energy, Vol. 111, (2015), 225-235. (doi:10.1016/ j.solener.2014.10.045).
43.   Coelho, B. and Oliveira, A.C., "REELCOOP project: Research cooperation in renewable energy technologies for electricity generation", SolarPACES 2013, Vol. 00, (2013), 26-29.
44.   Biyik, E., Araz, M., Hepbasli, A., Shahrestani, M., Yao, R., Shao, L., Essah, E., Oliveira, A.C., del Caño, T., Rico, E., Lechón, J.L., Andrade, L., Mendes, A. and Atlı, Y.B., "A key review of building integrated photovoltaic (BIPV) systems", Engineering Science And Technology, an International Journal, Vol. 20, No. 3, (2017), 833-858. (doi:10.1016/j.jestch.2017.01.009).
45.   Barkaszi, S.F. and Dunlop, J.P., "Discussion of strategies for mounting photovoltaic arrays on rooftops", Proceedings of Solar Forum 2001, Solar Energy: The Power to Choose, (2001), 333-338.
46.   Crawford, R.H., Treloar, G.J., Fuller, R.J. and Bazilian, M., "Life-cycle energy analysis of building integrated photovoltaic systems (BiPVs) with heat recovery unit", Renewable and Sustainable Energy Reviews, Vol. 10, (2006), 559-575. (doi:10.1016/j.rser.2004.11.005).
47.   "Building integrated photovoltaics (BIPV)", ( (accessed March 8, 2018).
48.   Debbarma, M., Sudhakar, K. and Baredar, P., "Comparison of BIPV and BIPVT: A review", Resource-Efficient Technologies, Vol. 3, (2017), 263-271. (doi:10.1016/j.reffit.2016.11.013).
49.   Lamnatou, C., Mondol, J.D., Chemisana, D. and Maurer, C., "Modelling and simulation of building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration", Renewable and Sustainable Energy Reviews, Vol. 48, (2015), 178-191. (doi:10.1016/j.rser.2015.03.075).
50.   Test, F.L., Lessmann, R.C. and Johary, A., "Heat transfer during wind flow over rectangular bodies in the natural environment", Journal of Heat Transfer, Vol. 103, (1981), 262. (doi:10.1115/1.3244451).
51.   Duffie, J. and Beckman, W.,Solar engineering of thermal processes, 4th ed., (2013). (doi:10.1115/1.2930068).
52.   Jaber, S. and Ajib, S., "Optimum design of Trombe wall system in mediterranean region", Solar Energy, Vol. 85, (2011), 1891-1898. (doi:10.1016/j.solener.2011.04.025).
53.   Soares, N., Costa, J.J., Gaspar, A.R. and Santos, P., "Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency", Energy and Buildings, Vol. 59, (2013), 82-103. (doi:10.1016/J.ENBUILD.2012.12.042).
54.   Athienitis, A.K., Liu, C., Hawes, D., Banu, D. and Feldman, D., "Investigation of the thermal performance of a passive solar test-room with wall latent heat storage", Building  and Environment, Vol. 32, (1997), 405-410. (doi:10.1016/S0360-1323(97)00009-7).
55.   He, W., Zhang, Y. and Ji, J., "Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water", Applied Thermal Engineering, Vol. 31, (2011), 3369-3376. (doi:10.1016/J.APPLTHERMALENG.2011.06.021).
56.   Radziemska, E., "Performance analysis of a photovoltaic-thermal integrated system", International Journal of Photoenergy, (2009). (doi:10.1155/2009/732093).
57.   Paul, D., Mandal, S.N., Mukherjee, D. and Bhadra Chaudhuri, S.R., "Optimization of significant insolation distribution parameters - A new approach towards BIPV system design", Renewable Energy, Vol. 35, (2010), 2182-2191. (doi:10.1016/j.renene.2010.02.026).
58.   Eiffert, P. and ImaginIt, L.L.C., "Guidelines for the economic evaluation of building- integrated photovoltaic power systems", International Energy AgencyPVPS Task 7 : Photovoltaic power systems in the built environment, (2003), 52.
59.   Sozer, H. and Elnimeiri, M., "Critical factors in reducing the cost of Building Integrated Photovoltaic (BIPV) systems", Architectural Science Review, Vol. 50, (2007), 115-121. (doi:10.3763/ asre.2007.5017).
60.   Osseweijer, F.J.W., van den Hurk, L.B.P., Teunissen, E.J.H.M. and van Sark, W.G.J.H.M., "A comparative review of building integrated photovoltaics ecosystems in selected European countries", Renewable and Sustainable Energy Reviews, (2018). (doi:10.1016/ j.rser.2018.03.001).
61.   Bizzarri, G., Gillott, M. and Belpoliti, V., "The potential of semitransparent photovoltaic devices for architectural integration: The development of device performance and improvement of the indoor environmental quality and comfort through case-study application", Sustainable Cities and Society, Vol. 1, (2011), 178-185. (doi:10.1016/ j.scs.2011.07.003).
62.   Koinegg, J., Brudermann, T., Posch, A. and Mortzek, M., "It would be a shame if we did not take advantage of the spirit of the times...", An analysis of prospects and barriers of building integrated photovoltaics, www.Ingentaconnect.Com, (2013). ( content/oekom/gaia/2013/00000022/00000001/art00011) (accessed March 8, 2018).
63.   Pagliaro, M., Ciriminna, R. and Palmisano, G., "BIPV: Merging the photovoltaic with the construction industry", Progress in Photovoltaics: Research and Applications, Vol. 18, (2010), 61-72. (doi:10.1002/pip.920).
64.   Sharples, S. and Radhi, H., "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society", Renewable Energy, Vol. 55, (2013), 150-159. (doi:10.1016/J.RENENE.2012.11.034).
65.   Li, D.H.W., Cheung, K.L., Lam, T.N.T. and Chan, W.W.H., "A study of grid-connected photovoltaic (PV) system in Hong Kong", Applied Energy, Vol. 90, (2012), 122-127. (doi:10.1016/j.apenergy. 2011.01.054).
66.   Aristizábal, A.J., Banguero, E. and Gordillo, G., "Performance and economic evaluation of the first grid-connected installation in Colombia, over 4 years of continuous operation", International Journal of Sustainable Energy, Vol. 30, (2011), 34-46. (doi:10.1080/ 1478646X.2010.489948).
67.   Seng, L.Y., Lalchand, G. and Sow Lin, G.M., "Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia", Energy Policy, Vol. 36, (2008), 2130-2142. (doi:10.1016/j.enpol.2008.02.016).
68.   Rahman, M.M., Haur, L.K. and Rahman, H.Y., "Building Integrated Photovoltaic (BIPV) in Malaysia: An economic feasibility study", Vol. 45, (2012), 7683-7688. ( 1350369798_45 (2012) 7683-7688.pdf).
69.   Chel, A., Tiwari, G.N. and Chandra, A., "Simplified method of sizing and life cycle cost assessment of building integrated photovoltaic system", Energy and Buildings, Vol. 41, (2009), 1172-1180. (doi:10.1016/j.enbuild.2009.06.004).
70.   Ikedi, C.U., Okoroh, M.I., Dean, A. and Omer, S.A., "Impact assessment for Building Integrated Photovoltaic (BIPV)", Energy, (2010), 1407-1415.
71.   Hammond, G.P., Harajli, H.A., Jones, C.I. and Winnett, A.B., "Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations", Energy Policy, Vol. 40, (2012), 219-230. (doi:10.1016/J.ENPOL.2011.09.048).
72.   Lu, L. and Yang, H.X., "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong", Applied Energy, Vol. 87, (2010), 3625-3631. (doi:10.1016/J.APENERGY.2010.06.011).
73.   Kato, K., Murata, A. and Sakuta, K., "Energy pay-back time and life-cycle CO2 emission of residential PV power system with silicon PV module", Progress in Photovoltaics: Research and Applications, Vol. 6, (1998), 105-115. (doi:10.1002/(SICI)1099-159X(199803/04)6:23.0.CO;2-C).
74.   Tiwari, G.N. and Ghosal, M.K., Renewable energy resources : Basic principles and applications, Alpha Science International, (2005). ( (accessed March 8, 2018).
75.   Yang, H., Burnett, J. and Ji, J., "Simple approach to cooling load component calculation through PV walls", Energy and Buildings, Vol. 31, (2000), 285-290. (doi:10.1016/S0378-7788(99)00041-9).
76., (accessed March 8, 2018).
77., (accessed March 8, 2018).
78., (accessed March 8, 2018).