Document Type : Technical Note


1 Department of Energy Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran, Iran

2 Renewable Energy Research Department, Niroo Research Institute (NRI), Tehran, Iran



In this paper, an industrial dairy farm unit was taken as a case study to carry out the applicable technical assessment for the construction of a biogas plant using a combined heat and power (CHP) unit. A comprehensive sensitivity analysis was applied to examine the effectiveness of the operational parameters and feed composition in the purity and production rate of biogas. Aspen Plus was used to implement the anaerobic digestion process. The results showed that any increase in the digester’s operational performance and mass rate of feedstock water led to the modification of biomethane content, but dropped in biogas mass flow rate. Moreover, an increase in the mass rate of carbohydrates, protein, and organic load rate (OLR) of feedstock reduces methane composition. Besides, increasing the rate of lipids has raised the rate of methane production and its composition.


Main Subjects

  1. George, M., Harper, J., Davy, J., Becchetti, T. & Maier, G. Livestock Production. Livestock Production (2020) doi:10.3733/ucanr.8546.
  2. Muller, Z. O. Feed from animal wastes: state of knowledge. FAO Animal Production and Health Paper. 1980, No. 18, xi + 190 pp.; 15 fig.; 15 pp. of ref. (1980).
  3. Zeb, I. et al. Recycling separated liquid-effluent to dilute feedstock in anaerobic digestion of dairy manure. Energy 119, 1144–1151 (2017).
  4. Kozłowski, K. et al. Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy 183, 1023–1031 (2019).
  5. Akbulut, A. Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdaĝi{dotless} case study. Energy 44, 381–390 (2012).
  6. Teodorita Al Seadi, Domiik Rutz, Heinz Prassl, Michael Kottner, Tobias Finsterwalder, Silke Volk, R. J. Downloaded from (2008).
  7. Outlook for biogas and biomethane. Outlook for biogas and biomethane (2020) doi:10.1787/040c8cd2-en.
  8. I et al. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech i, 13 (2012).
  9. Angelidaki, I., Chen, X., Cui, J., Kaparaju, P. & Ellegaard, L. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Research 40, 2621–2628 (2006).
  10. Wijffels, R. H., Barten, H. & Reith, R. H. Bio_methane & Bio-hydrogen. 166 (2003).
  11. Moestedt, J., Påledal, S. N., Schnürer, A. & Nordell, E. Biogas production from thin stillage on an industrial scale-experience and optimisation. Energies 6, 5642–5655 (2013).
  12. Krzysztof Ziemiński. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African Journal of Biotechnology 11, (2012).
  13. Al-Rubaye, H., Karambelkar, S., Shivashankaraiah, M. M. & Smith, J. D. Process Simulation of Two-Stage Anaerobic Digestion for Methane Production. Biofuels 10, 181–191 (2019).
  14. Appels, L., Baeyens, J., Degrève, J. & Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science 34, 755–781 (2008).
  15. Gerardi, M. H. The Microbiology of Anaerobic Digesters. The Microbiology of Anaerobic Digesters (2003) doi:10.1002/0471468967.
  16. Marinescu, M., Dumitru, M. & Lăcătuşu, A. Biodegradation of Petroleum Hydrocarbons in an Artificial Polluted Soil. Journal of Agricultural Science 41, 157–162 (2009).
  17. Lorenzo-Llanes, J., Pagés-Díaz, J., Kalogirou, E. & Contino, F. Development and application in Aspen plus of a process simulation model for the anaerobic digestion of vinasses in UASB reactors: Hydrodynamics and biochemical reactions. Journal of Environmental Chemical Engineering 8, (2020).
  18. Mabalane, P. N., Oboirien, B. O., Sadiku, E. R. & Masukume, M. A Techno-economic Analysis of Anaerobic Digestion and Gasification Hybrid System: Energy Recovery from Municipal Solid Waste in South Africa. Waste and Biomass Valorization 12, 1167–1184 (2021).
  19. Rasapoor, M. et al. Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel 261, (2020).
  20. Achinas, S., Martherus, D., Krooneman, J. & Euverink, G. J. W. Preliminary assessment of a biogas-based power plant from organic waste in the North Netherlands. Energies 12, (2019).
  21. Ravendran, R. R., Abdulrazik, A. & Zailan, R. Aspen Plus simulation of optimal biogas production in anaerobic digestion process. IOP Conference Series: Materials Science and Engineering 702, (2019).
  22. Anukam, A., Mohammadi, A., Naqvi, M. & Granström, K. A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes 7, 1–19 (2019).
  23. Batstone, D. J. & Keller, J. Industrial applications of the IWA anaerobic digestion model No. 1 (ADM1). Water Science and Technology 47, 199–206 (2003).
  24. Angelidaki, I., Ellegaard, L. & Ahring, B. K. A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnology and Bioengineering 63, 363–372 (1999).
  25. Al-rubaye, H., Karambelkar, S., Shivashankaraiah, M. M., Smith, J. D. & Smith, J. D. Process Simulation of Two-Stage Anaerobic Digestion for Methane Production Process Simulation of Two-Stage Anaerobic Digestion for Methane Production. Biofuels 0, 1–11 (2017).
  26. Rajendran, K., Kankanala, H. R., Lundin, M. & Taherzadeh, M. J. A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresource Technology 168, 7–13 (2014).
  27. Harun, N., Hassan, Z., Zainol, N., Ibrahim, W. H. W. & Hashim, H. Anaerobic Digestion Process of Food Waste for Biogas Production: A Simulation Approach. Chemical Engineering and Technology 42, 1834–1839 (2019).
  28. S, R. Precise biogas flow measurement: overcoming the challenges of changing gas composition. (2013).
  29. Rico, C., Rico, J. L., Tejero, I., Muñoz, N. & Gómez, B. Anaerobic digestion of the liquid fraction of dairy manure in pilot plant for biogas production: Residual methane yield of digestate. Waste Management 31, 2167–2173 (2011).
  30. Morvan, T., Gogé, F., Oboyet, T., Carel, O. & Fouad, Y. A dataset of the chemical composition and near-infrared spectroscopy measurements of raw cattle, poultry and pig manure. Data in Brief 39, (2021).
  31. Picardo, A., Soltero, V. M., Peralta, M. E. & Chacartegui, R. District heating based on biogas from wastewater treatment plant. Energy 180, 649–664 (2019).
  32. Labatut, R. A., Angenent, L. T. & Scott, N. R. Conventional mesophilic vs. thermophilic anaerobic digestion: Atrade-off between performance and stability? Water Research 53, 249–258 (2014).
  33. Nges, I. A. & Liu, J. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renewable Energy 35, 2200–2206 (2010).
  34. Dareioti, M. A. & Kornaros, M. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresource Technology 175, 553–562 (2015).
  35. Kumar, A. & Samadder, S. R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy 197, (2020).
  36. Vavilin, V. A., Vasiliev, V. B. & Rytov, S. V. Modelling of gas pressure effects on anaerobic digestion. Bioresource Technology 52, 25–32 (1995).
  37. Mao, C., Feng, Y., Wang, X. & Ren, G. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews 45, 540–555 (2015).
  38. Rodriguez, C., Alaswad, A., El-Hassan, Z. & Olabi, A. G. Waste paper and macroalgae co-digestion effect on methane production. Energy 154, 119–125 (2018).
  39. Kothari, R., Pandey, A. K., Kumar, S., Tyagi, V. V. & Tyagi, S. K. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews 39, 174–195 (2014).
  40. Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B. & Flotats, X. Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology 102, 2219–2227 (2011).
  41. Romero-Güiza, M. S., Vila, J., Mata-Alvarez, J., Chimenos, J. M. & Astals, S. The role of additives on anaerobic digestion: A review. Renewable and Sustainable Energy Reviews 58, 1486–1499 (2016).
  42. Siddique, M. N. I. & Wahid, Z. A. Achievements and perspectives of anaerobic co-digestion: A review. Journal of Cleaner Production 194, 359–371 (2018).
  43. Harris, P. W., Schmidt, T. & McCabe, B. K. Impact of thermobaric pre-treatment on the continuous anaerobic digestion of high-fat cattle slaughterhouse waste. Biochemical Engineering Journal 134, 108–113 (2018).
  44. Kovács, E. et al. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition. PLoS ONE 8, (2013).
  45. Perle, M., Kimchie, S. & Shelef, G. Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Research 29, 1549–1554 (1995).
  46. Schnürer, A. & Jarvis, Å. Sverige: Svesnkt gastekniskt Center och Avfall Sverige. Mikrobiologisk handbok för biogas anläggningar (2009).
  47. Elsayed, M., Andres, Y., Blel, W., Gad, A. & Ahmed, A. Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Conversion and Management 117, 538–547 (2016).
  48. Daneshgar, S., Buttafava, A., Capsoni, D., Callegari, A. & Capodaglio, A. G. Impact of pH and ionic molar ratios on phosphorous forms precipitation and recovery from different wastewater sludges. Resources 7, (2018).
  49. Deublein, D., Editors, A. S., Gmbh, W. V. & Kgaa, C. Book Review BIOGAS FROM WASTE AND RENEWABLE RESOURCES An introduction. 7, 483–485 (2008).