Document Type : Review Article

Authors

1 Department of Mechanical Engineering, All India Shri Shivaji Memorial Society’s College of Engineering, Pune, P. O. Box: 411001, Maharashtra, India.

2 Department of Mechanical Engineering, SSVPS Bapusaheb Shivajirao Deore College of Engineering, Dhule, P. O. Box: 424005, Maharashtra, India.

Abstract

Preserving food from harvest to consumer level is a challenge in the agriculture sector. Drying is a crucial post-harvest technique that lowers moisture to levels suitable for storage. Solar drying is a traditional renewable energy drying process. Different solar drying methods have been developed to speed up the drying process and maintain the product's nutritious content. Indirect solar drying is one of the efficient drying methods that has better control over the drying temperature. Indirect solar drying has developed into a desirable, effective, and environmentally responsible drying technique when combined with solar collectors and thermal storage. Flat plates, evacuated tubes, and concentrated solar collectors are used in indirect solar dryers along with direct air heating or thermal storage systems. This study aims to review the improvement in the drying rate with different air heating mechanisms. Flat plate collectors with liquid working fluid are employed to heat the air, whereas in evacuated tube collectors, the air is directly heated passing through the tubes. Working fluids, air temperature, air velocity, and solar radiation are important dryer parameters affecting the drying rate. The paper also discusses the usage of heat storage devices for continuous drying operations. The drying time is greatly reduced through integration with latent and sensible storage technologies. Products that have been dried using indirect solar dryer and appropriate drying models are tabulated. Aspects of indirect solar drying and challenges in drying time reduction are also reported.

Keywords

Main Subjects

  1. Abdenouri, N., Zoukit, A., Salhi, I., & Doubabi, S. (2022). Model identification and fuzzy control of the temperature inside an active hybrid solar indirect dryer. Solar Energy, 231(December), 328-342. https://doi.org/10.1016/j.solener.2021.11.026
  2. Abi Mathew, A., & Thangavel, V. (2019). Investigation on indirect natural convection solar drying of anti-diabetic medicinal products. Journal of Food Processing and Preservation, 43(11), 1-16. https://doi.org/10.1111/jfpp.14170
  3. Ahmad, A., Prakash, O., & Kumar, A. (2021). Drying kinetics and economic analysis of bitter gourd flakes drying inside hybrid greenhouse dryer. Environmental Science and Pollution Research, 0123456789. https://doi.org/10.1007/s11356-021-17044-x
  4. Arunsandeep, G., Lingayat, A., Chandramohan, V. P., Raju, V. R. K., & Reddy, K. S. (2018). A numerical model for drying of spherical object in an indirect type solar dryer and estimating the drying time at different moisture level and air temperature. International Journal of Green Energy, 15(3), 189-200. https://doi.org/10.1080/15435075.2018.1433181
  5. Aydin, D., Ezenwali, S. E., Alibar, M. Y., & Chen, X. (2021). Novel modular mixed-mode dryer for enhanced solar energy utilization in agricultural crop drying applications. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 43(16), 1958-1974. https://doi.org/10.1080/15567036.2019.1663306
  6. Banout, J., Havlik, J., Kulik, M., Kloucek, P., Lojka, B., & Valterova, I. (2010). Effect of solar drying on the composition of essential oil of sacha culantro (eryngium foetidum l.) grown in the peruvian amazon. Journal of Food Process Engineering, 33(1), 83-103. https://doi.org/10.1111/j.1745-4530.2008.00261.x
  7. Barghi Jahromi, M. S., Kalantar, V., Samimi Akhijahani, H., & Kargarsharifabad, H. (2022). Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials. Journal of Energy Storage, 51(July), 104434. https://doi.org/10.1016/j.est.2022.104434
  8. Belessiotis, V., & Delyannis, E. (2011). Solar drying. Solar Energy, 85(8), 1665-1691. https://doi.org/10.1016/j.solener.2009.10.001
  9. Bhendwade, V. T., & Dube, A. S. (2018). Performance Evaluation of Indirect Solar Dryer. In International Journal of Applied Engineering Research 13(5). http://www.ripublication.com58
  10. Bhor, P. P., Khandetod, Y. P., Mohod, A. G., & Sengar, S. H. (2010). Performance study of solar tunnel dryer for drying of fish variety Dhoma. International Journal of Agricultural Engineering 2(2), 222-227. https://www.cabidigitallibrary.org/doi/full/10.5555/20103050309
  11. Castillo Téllez, M., Pilatowsky Figueroa, I., Castillo Téllez, B., López Vidaña, E. C., & López Ortiz, A. (2018). Solar drying of Stevia (Rebaudiana Bertoni) leaves using direct and indirect technologies. Solar Energy, 159, 898-907. https://doi.org/10.1016/j.solener.2017.11.031
  12. Chandra, Y. P., Singh, A., Kannojiya, V., & Kesari, J. P. (2019). Solar energy a path to India’s prosperity. Journal of The Institution of Engineers (India): Series C, 100(3), 539-546. https://doi.org/10.1007/s40032-018-0454-6
  13. Chaouch, W. B., Khellaf, A., Mediani, A., Slimani, M. E. A., Loumani, A., & Hamid, A. (2018). Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment. Solar Energy, 174, 328-341. https://doi.org/10.1016/j.solener.2018.09.037
  14. Daghigh, R., & Shafieian, A. (2016a). An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system. Renewable Energy, 96, 872-880. https://doi.org/10.1016/j.renene.2016.05.025
  15. Daghigh, R., & Shafieian, A. (2016b). Energy-exergy analysis of a multipurpose evacuated tube heat pipe solar water heating-drying system. Experimental Thermal and Fluid Science, 78, 266-277. https://doi.org/10.1016/j.expthermflusci.2016.06.010
  16. Das, M., & Akpinar, E. K. (2020). Determination of thermal and drying performances of the solar air dryer with solar tracking system: Apple drying test. Case Studies in Thermal Engineering, 21. https://doi.org/10.1016/j.csite.2020.100731
  17. Gebrehiwot, M., & Vanierschot, M. (2019). Design, development and CFD modeling of indirect solar food dryer. Energy Procedia, 158, 1128-1134. https://doi.org/10.1016/j.egypro.2019.01.278
  18. Deng, Z., Li, M., Xing, T., Zhang, J., Wang, Y., & Zhang, Y. (2021). A literature research on the drying quality of agricultural products with using solar drying technologies. Solar Energy, 229(June), 69-83. https://doi.org/10.1016/j.solener.2021.07.041
  19. Deshmukh, A. W., Varma, M. N., Yoo, C. K., & Wasewar, K. L. (2014). Investigation of solar drying of Ginger (Zingiber officinale): Emprical modelling, drying characteristics, and quality study. Chinese Journal of Engineering, 2014, 1-7. https://doi.org/10.1155/2014/305823
  20. Digambar Singh, A., Yog Raj Sood, B., & Deepak, C. (2019). Recent techno-economic potential and development of solar energy sector in India. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 0(0), 1-12. https://doi.org/10.1080/02564602.2019.1596043
  21. Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes (Fourth ed.). John Wiley & Sons.
  22. ELkhadraoui, A., Kooli, S., Hamdi, I., & Farhat, A. (2015). Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renewable Energy, 77, 1-8. https://doi.org/10.1016/j.renene.2014.11.090
  23. Ergün, A., Ceylan, İ., Acar, B., & Erkaymaz, H. (2017). Energy–exergy–ANN analyses of solar-assisted fluidized bed dryer. Drying Technology, 35(14), 1711-1720. https://doi.org/10.1080/07373937.2016.1271338
  24. Essalhi, H., Benchrifa, M., Tadili, R., & Bargach, M. N. (2018). Experimental and theoretical analyasis of drying grapes under an indirect solar dryer and in open sun. Innovative Food Science and Emerging Technologies, 49, 58-64. https://doi.org/10.1016/j.ifset.2018.08.002
  25. Etim, P. J., Ben Eke, A., & Simonyan, K. J. (2020). Design and development of an active indirect solar dryer for cooking banana. Scientific African, 8, https://doi.org/10.1016/j.sciaf.2020.e00463
  26. Flores-Prieto, J. J., Aguilar-Castro, K. M., Baltazar-López, M. E., Alvarez, G., Castillo-Rincón, R., & Bahena-Bustos, J. C. (2014). Indoor indirect solar dryer for ceramic craft industry. Journal of Mechanical Science and Technology, 28(1), 349-356. https://doi.org/10.1007/s12206-013-0974-1
  27. Geete, A., Singh, Y., & Rathore, S. (2021). Energy and exergy analyses of fabricated solar drying system with smooth and rough surfaces at different conditions: A case study. Heat Transfer, 50(6), 6259-6284. https://doi.org/10.1002/htj.22171
  28. Getahun, E., Delele, M. A., Gabbiye, N., Fanta, S. W., Demissie, P., & Vanierschot, M. (2021). Importance of integrated CFD and product quality modeling of solar dryers for fruits and vegetables: A review. Solar Energy, 220(November 2020), 88-110. https://doi.org/10.1016/j.solener.2021.03.049
  29. Gilago, M. C., & Chandramohan, V. P. (2022). Performance evaluation of natural and forced convection indirect type solar dryers during drying ivy gourd: An experimental study. Renewable Energy, 182, 934-945. https://doi.org/10.1016/j.renene.2021.11.038
  30. Girase, R., Mahajan, V., Kotwal, A., & Ugale, A. (2020). A solar dryer technology. International Research Journal of Engineering and Technology. irjet.net
  31. Goud, M., Reddy, M. V. V., Chandramohan, V. P., Lingayat, A., Raju, V. R. K., & Suresh, S. (2021). Experimental investigation of drying kinetics of green chilli and okra using indirect solar dryer with evaluation of dryer performance. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2021.1946145
  32. Goud, M., Reddy, M. V. V., Chandramohan, V. P., & Suresh, S. (2019). A novel indirect solar dryer with inlet fans powered by solar PV panels: Drying kinetics of Capsicum Annum and Abelmoschus esculentus with dryer performance. Solar Energy, 194, 871-885. https://doi.org/10.1016/j.solener.2019.11.031
  33. Gulandaz, M. A., Ali, M. R., Hasan, M. M., Nur-A-Alam, M., Jahan, N., & Rahman, M. M. (2015). Performance evaluation of modified hybrid solar dryer for paddy seed. International Journal of Postharvest Technology and Innovation, 5(2), 105-124. https://doi.org/10.1504/IJPTI.2015.074321
  34. Gupta, A., Biswas, A., Das, B., & Reddy, B. V. (2022). Development and testing of novel photovoltaic-thermal collector-based solar dryer for green tea drying application. Solar Energy, 231(December 2021), 1072-1091. https://doi.org/10.1016/j.solener.2021.12.030
  35. Haque, T., Tiwari, M., Bose, M., & Kedare, S. B. (2019). Drying kinetics, quality and economic analysis of a domestic solar dryer for agricultural products. INAE Letters, 4(3), 147-160. https://doi.org/10.1007/s41403-018-0052-1
  36. Hasan, M., & Langrish, T. A. G. (2016). Development of a sustainable methodology for life-cycle performance evaluation of solar dryers. Solar Energy, 135, 1-13. https://doi.org/10.1016/j.solener.2016.05.036
  37. Hegde, V. N., Hosur, V. S., Rathod, S. K., Harsoor, P. A., & Narayana, K. B. (2015). Design, fabrication and performance evaluation of solar dryer for banana. Energy, Sustainability and Society, 5(1). https://doi.org/10.1186/s13705-015-0052-x
  38. Hssaini, L., Ouaabou, R., Hanine, H., Razouk, R., & Idlimam, A. (2021). Kinetics, energy efficiency and mathematical modeling of thin layer solar drying of figs (Ficus carica L.). Scientific Reports, 11(1), 1-21. https://doi.org/10.1038/s41598-021-00690-z
  39. Jangde, P. K., Singh, A., & Arjunan, T. V. (2021). Efficient solar drying techniques: A review. Environmental Science and Pollution Research, 2012. https://doi.org/10.1007/s11356-021-15792-4
  40. Jha, A., & Tripathy, P. P. (2021). Recent advancements in design, application, and simulation studies of hybrid solar drying technology. Food Engineering Reviews, 13(2). https://doi.org/10.1007/s12393-020-09223-2
  41. Kabeel, A. E., Dharmadurai, P. D. L., Vasanthaseelan, S., Sathyamurthy, R., Ramani, B., Manokar, A. M., & Chamkha, A. (2022). Experimental studies on natural convection open and closed solar drying using external reflector. Environmental Science and Pollution Research, 29(1), 1391-1400. https://doi.org/10.1007/s11356-021-15768-4
  42. Khaing Hnin, K., Zhang, M., Mujumdar, A. S., & Zhu, Y. (2019). Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology, 37(12), 1465-1480. https://doi.org/10.1080/07373937.2018.1510417
  43. Khallaf, A. E. M., & El-Sebaii, A. (2022). Review on drying of the medicinal plants (herbs) using solar energy applications. Heat and Mass Transfer/Waerme- Und Stoffuebertragung. https://doi.org/10.1007/s00231-022-03191-5
  44. Kilanko, O., Ilori, T. A., Leramo, R. O., Babalola, P. O., Eluwa, S. E., Onyenma, F. A., Ameh, N. I., Onwordi, P. N., Aworinde, A. K., & Fajobi, M. A. (2019). Design and performance evaluation of a solar dryer. Journal of Physics: Conference Series, 1378(3). https://doi.org/10.1088/1742-6596/1378/3/032001
  45. Komolafe, C. A., Ojediran, J. O., Ajao, F. O., Dada, O. A., Afolabi, Y. T., Oluwaleye, I. O., & Alake, A. S. (2019). Modelling of moisture diffusivity during solar drying of locust beans with thermal storage material under forced and natural convection mode. Case Studies in Thermal Engineering, 15. https://doi.org/10.1016/j.csite.2019.100542
  46. Kondareddy, R., Sivakumaran, N., Kesavan, Radha Krishnan Dipanka, S., Siddrtha, S., & Nayak, P. K. (2019). Performance evaluation of modified forced convection solar dryer with energy storage unit for drying of elephant apple (Dillenia indica). Journal of Food Processing Engineering, 45(1), 1-18. https://doi.org/10.1111/jfpe.13934
  47. Koua, B. K., Koffi, P. M. E., & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences, 18(1), 72-82. https://doi.org/10.1016/j.jssas.2017.01.002
  48. Kumar Aggarwal Yashwant Singh Parmar, R., & Sharma Yashwant Singh Parmar, R. (2019). Changes in physico-chemical and sensory attributes of some wild fruits dried in indirect solar dryer. International Journal of Chemical Studies, 7(2). https://www.researchgate.net/publication/333672951
  49. Kusmiyati, K., & Fudholi, A. (2021). Solar-Assisted microwave convective dryer for coffee cherries. International Journal of Renewable Energy Research, 11(1), 407–415. https://doi.org/10.20508/ijrer.v11i1.11686.g8152
  50. Lakshmi, D. V. N., Muthukumar, P., Ekka, J. P., Nayak, P. K., & Layek, A. (2019). Performance comparison of mixed mode and indirect mode parallel flow forced convection solar driers for drying Curcuma zedoaria. Journal of Food Process Engineering, 42(4), 1-12. https://doi.org/10.1111/jfpe.13045
  51. Lamrani, B., & Draoui, A. (2021). Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-bed thermal energy storage system: A case study of solar thermal applications. Drying Technology, 39(10), 1371-1388. https://doi.org/10.1080/07373937.2020.1750025
  52. Lingayat, A. B., Chandramohan, V. P., Raju, V. R. K., & Meda, V. (2020). A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights. Applied Energy, 258. https://doi.org/10.1016/j.apenergy.2019.114005
  53. Lingayat, A., Chandramohan, V. P., & Raju, V. R. K. (2020). Energy and exergy analysis on drying of banana using indirect type natural convection solar dryer. Heat Transfer Engineering, 41(6–7), 551-561. https://doi.org/10.1080/01457632.2018.1546804
  54. Lingayat, A., Chandramohan, V. P., Raju, V. R. K., & Suresh, S. (2021). Drying kinetics of tomato (Solanum lycopersicum) and Brinjal (Solanum melongena) using an indirect type solar dryer and performance parameters of dryer. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 57(5), 853-872. https://doi.org/10.1007/s00231-020-02999-3
  55. Liu, J. T., Li, M., Yu, Q. F., & Ling, D. L. (2014). A novel parabolic trough concentrating solar heating for cut tobacco drying system. International Journal of Photoenergy, 2014. https://doi.org/10.1155/2014/209028
  56. Liu, M., Steven Tay, N. H., Bell, S., Belusko, M., Jacob, R., Will, G., Saman, W., & Bruno, F. (2016). Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renewable and Sustainable Energy Reviews, 53, 1411-1432. https://doi.org/10.1016/j.rser.2015.09.026
  57. Mahapatra, A., & Tripathy, P. P. (2018). Modeling and simulation of moisture transfer during solar drying of carrot slices. Journal of Food Process Engineering, 41(8), 1-15. https://doi.org/10.1111/jfpe.12909
  58. Mall, P., & Singh, D. (2018). Comparative study of performance of indirect mode with PCM and mixed mode solar dryer for coriander leaves. International Journal of Applied Engineering Research, 13(8). http://www.ripublication.com
  59. Malwad, D., & Tungikar, V. (2020). Experimental performance analysis of an improved receiver for Scheffler solar concentrator. SN Applied Sciences, 2(12), 1-14. https://doi.org/10.1007/s42452-020-03848-y
  60. Matavel, C. E., Hoffmann, H., Rybak, C., Hafner, J. M., Salavessa, J., Eshetu, S. B., & Sieber, S. (2021). Experimental evaluation of a passive indirect solar dryer for agricultural products in Central Mozambique. Journal of Food Processing and Preservation, 45(11), 1-11. https://doi.org/10.1111/jfpp.15975
  61. Misha, S., Mat, S., Ruslan, M. H., Salleh, E., & Sopian, K. (2016). Performance of a solar-assisted solid desiccant dryer for oil palm fronds drying. Solar Energy, 132, 415-429. https://doi.org/10.1016/j.solener.2016.03.041
  62. Montero, I., Blanco, J., Miranda, T., Rojas, S., & Celma, A. R. (2010). Design, construction and performance testing of a solar dryer for agroindustrial by-products. Energy Conversion and Management, 51(7), 1510-1521. https://doi.org/10.1016/j.enconman.2010.02.009
  63. Mutabilwa, P. X., & Nwaigwe, K. N. (2020). Experimental evaluation of drying of banana using a double-pass solar collector (DPSC) and theoretical analysis using a CFD model. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1789363
  64. Nabnean, S., Janjai, S., Thepa, S., Sudaprasert, K., Songprakorp, R., & Bala, B. K. (2016). Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes. Renewable Energy, 94, 147-156. https://doi.org/10.1016/j.renene.2016.03.013
  65. Naemsai, T., Jareanjit, J., & Thongkaew, K. (2019). Experimental investigation of solar-assisted heat pump dryer with heat recovery for the drying of chili peppers. Journal of Food Process Engineering, 42(6), 1-10. https://doi.org/10.1111/jfpe.13193
  66. Nasri, F. (2020). Solar thermal drying performance analysis of banana and peach in the region of Gafsa (Tunisia). Case Studies in Thermal Engineering, 22. https://doi.org/10.1016/j.csite.2020.100771
  67. Natarajan, S. K., Elangovan, E., Elavarasan, R. M., Balaraman, A., & Sundaram, S. (2022). Review on solar dryers for drying fish, fruits, and vegetables. Environmental Science and Pollution Research, 0123456789. https://doi.org/10.1007/s11356-022-19714-w
  68. Ndukwu, M. C., Bennamoun, L., Abam, F. I., Ben Eke, A., & Ukoha, D. (2017). Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renewable Energy, 113, 1182-1192. https://doi.org/10.1016/j.renene.2017.06.097
  69. Ndukwu, M. C., Simo-Tagne, M., Abam, F. I., Onwuka, O. S., Prince, S., & Bennamoun, L. (2020). Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon, 6(2). https://doi.org/10.1016/j.heliyon.2020.e03401
  70. Nguimdo, L. A., & Noumegnie, V. A. K. (2020). Design and implementation of an automatic indirect hybrid solar dryer for households and small industries. International Journal of Renewable Energy Research, 10(3), 1415-1425. https://doi.org/10.20508/ijrer.v10i3.11051.g8032
  71. Nukulwar, M. R., & Tungikar, V. B. (2020). Thin layer mathematical modelling of turmeric in indirect natural conventional solar dryer abstract . Journal of Solar Energy Engineering, Transactions of the ASME, 142(August). https://doi.org/10.1115/1.4045828
  72. Patel, J., Andharia, J., Georgiev, A., Dzhonova, D., Maiti, S., Petrova, T., Stefanova, K., Trayanov, I., & Panyovska, S. (2020). A review of phase change material based thermal energy accumulators in small-scale solar thermal dryers. Bulgarian Chemical Communications, 52(December), 53-64. https://doi.org/10.34049/bcc.52.C.0009
  73. Pirasteh, G., Saidur, R., Rahman, S. M. A., & Rahim, N. A. (2014). A review on development of solar drying applications. Renewable and Sustainable Energy Reviews, 31, 133-148. https://doi.org/10.1016/j.rser.2013.11.052
  74. Prakash, O., Kumar, A., & Laguri, V. (2016). Performance of modified greenhouse dryer with thermal energy storage. Energy Reports, 2, 155-162. https://doi.org/10.1016/j.egyr.2016.06.003
  75. Prakash, O., Kumar, A., & Sharaf-Eldeen, Y. I. (2016). Review on Indian solar drying status. Current Sustainable/Renewable Energy Reports, 3(3-4), 113-120. https://doi.org/10.1007/s40518-016-0058-9
  76. Pranesh, V., Velraj, R., Christopher, S., & Kumaresan, V. (2019). A 50 year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications. Solar Energy, 187(April), 293-340. https://doi.org/10.1016/j.solener.2019.04.056
  77. Purnomo, C. W., & Indarti, S. (2018). Modification of indirect solar dryer for Simplicia production. IOP Conference Series: Earth and Environmental Science, 120(1). https://doi.org/10.1088/1755-1315/120/1/012026
  78. Radhakrishnan Govindan, G., Sattanathan, M., Muthiah, M., Ranjitharamasamy, S. P., & Athikesavan, M. M. (2022). Performance analysis of a novel thermal energy storage integrated solar dryer for drying of coconuts. Environmental Science and Pollution Research, 0123456789. https://doi.org/10.1007/s11356-021-18052-7
  79. Rahman, M. M., Rahman, M. M., & Salam, K. A. (2017). Design, construction and performance study of an indirect type solar dryer for food preservation. MA Thesis.
  80. Ravindra, K., Singh, T., & Mor, S. (2019). Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production, 208, 261-273. https://doi.org/10.1016/j.jclepro.2018.10.031
  81. Saikia, D., Kumar Nayak, P., Radha Krishnan, K., Kondareddy, R., & Lakshmi, D. V. N. (2022). Development of indirect type solar dryer and experiments for estimation of drying parameters of dhekia (Diplazium esculentum). Materials Today: Proceedings, 56(February), 774-780. https://doi.org/10.1016/j.matpr.2022.02.255
  82. Sallam, Y. I., Aly, M. H., Nassar, A. F., & Mohamed, E. A. (2015). Solar drying of whole mint plant under natural and forced convection. Journal of Advanced Research, 6(2), 171-178. https://doi.org/10.1016/j.jare.2013.12.001
  83. Sekyere, C. K. K., Forson, F. K., & Adam, F. W. (2016). Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater. Renewable Energy, 92, 532-542. https://doi.org/10.1016/j.renene.2016.02.020
  84. Shamekhi-Amiri, S., Gorji, T. B., Gorji-Bandpy, M., & Jahanshahi, M. (2018). Drying behaviour of lemon balm leaves in an indirect double-pass packed bed forced convection solar dryer system. Case Studies in Thermal Engineering, 12, 677-686. https://doi.org/10.1016/j.csite.2018.08.007
  85. Sharma, K. D., Srivastava, S., & Singh, J. (2021). Design, construction and performance testing of a simple low-cost solar dryer for agricultural and food products. International Journal of Renewable Energy Technology, 12(4), 301. https://doi.org/10.1504/ijret.2021.118484
  86. Shrivastava, V., & Kumar, A. (2016). Experimental investigation on the comparison of fenugreek drying in an indirect solar dryer and under open sun. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 52(9), 1963-1972. https://doi.org/10.1007/s00231-015-1721-1
  87. Simo-Tagne, M., Bonoma, B., Bennamoun, L., Monkam, L., Léonard, A., Zoulalian, A., & Rogaume, Y. (2019). Modeling of coupled heat and mass transfer during drying of ebony wood using indirect natural convection solar dryer. Drying Technology, 37(14), 1863-1878. https://doi.org/10.1080/07373937.2018.1544144
  88. Singh, D., & Mall, P. (2020). Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1810825
  89. Singh, P., & Gaur, M. K. (2022). A review on thermal analysis of hybrid greenhouse solar dryer (HGSD). Journal of Thermal Engineering, 8(1), 103-119. https://doi.org/10.18186/thermal.1067047
  90. Subramaniam, B. S. K., Sugumaran, A. K., & Athikesavan, M. M. (2022). Performance analysis of a solar dryer integrated with thermal energy storage using PCM-Al2O3 Environmental Science and Pollution Research, 0123456789. https://doi.org/10.1007/s11356-022-19170-6
  91. Suherman, S., Susanto, E. E., Zardani, A. W., & Dewi, N. H. R. (2020). Performance study of hybrid solar dryer for cassava starch. AIP Conference Proceedings, 2197. https://doi.org/10.1063/1.5140943
  92. Sunil, Varun, & Sharma, N. (2014). Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves. Journal of Thermal Analysis and Calorimetry, 118(1), 523-531. https://doi.org/10.1007/s10973-014-3949-2
  93. Tabassum, S., Bashar, M., Islam, M., Sharmin, A., Debnath, S., Parveen, S., & Khanom, S. (2019). Design and development of solar dryer for food preservation. Bangladesh Journal of Scientific and Industrial Research, 54(2), 155-160. https://doi.org/10.3329/bjsir.v54i2.41672
  94. Tarigan, E. (2018). Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case Studies in Thermal Engineering, 12, 149-165. https://doi.org/10.1016/j.csite.2018.04.012
  95. Tarigan, E., & Tekasakul, P. (2005). A mixed-mode natural convection solar dryer with biomass Burner and heat storage back-up heater. Anzses, January, 1-9. http://people.eng.unimelb.edu.au/lua/049.pdf
  96. Tiwari, S., & Tiwari, G. N. (2018). Grapes (Vitis vinifera) drying by semitransparent photovoltaic module (SPVM) integrated solar dryer: An experimental study. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 54(6), 1637-1651. https://doi.org/10.1007/s00231-017-2257-3
  97. Tlatelpa-Becerro, A., Rico-Martínez, R., Urquiza, G., & Calderón-Ramírez, M. (2020). Obtaining of crataegus mexicana leaflets using an indirect solar dryer. Revista Mexicana de Ingeniera Quimica, 19(2), 669-676. https://doi.org/10.24275/rmiq/Alim896
  98. Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., & Müller, J. (2020). Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. In Journal of Environmental Management, 268, Academic Press. https://doi.org/10.1016/j.jenvman.2020.110730
  99. Ullah, F., Kang, M., Khattak, M. K., & Wahab, S. (2018). Retracted: Experimentally investigated the asparagus (Asparagus officinalis L.) drying with flat-plate collector under the natural convection indirect solar dryer. Food Science and Nutrition, 6(6), 1357. https://doi.org/10.1002/fsn3.603
  100. Vengsungnle, P., Jongpluempiti, J., Srichat, A., Wiriyasart, S., & Naphon, P. (2020). Thermal performance of the photovoltaic-ventilated mixed mode greenhouse solar dryer with automatic closed loop control for Ganoderma drying. Case Studies in Thermal Engineering, 21. https://doi.org/10.1016/j.csite.2020.100659
  101. Wang, W., Li, M., Hassanien, R. H. E., Wang, Y., & Yang, L. (2018). Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Applied Thermal Engineering, 134, 310-321. https://doi.org/10.1016/j.applthermaleng.2018.01.115
  102. Yadav, S., Lingayat, A. B., Chandramohan, V. P., & Raju, V. R. K. (2018). Numerical analysis on thermal energy storage device to improve the drying time of indirect type solar dryer. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 54(12), 3631-3646. https://doi.org/10.1007/s00231-018-2390-7
  103. Zaredar, A., Effatnejad, R., & Behnam, B. (2018). Construction of an indirect solar dryer with a photovoltaic system and optimised speed control. IET Renewable Power Generation, 12(15), 1807-1812. https://doi.org/10.1049/iet-rpg.2018.5211
  104. Zareiforoush, H., Bakhshipour, A., & Bagheri, I. (2022). Performance evaluation and optimization of a solar-assisted multi-belt conveyor dryer based on response surface methodology. Journal of Renewable Energy and Environment (JREE), 9(1), 78-92. https://doi.org/10.30501/jree.2021.285697.1203
  105. Zoukit, A., El Ferouali, H., Salhi, I., Doubabi, S., & Abdenouri, N. (2019). Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection. Renewable Energy, 133, 849-860. https://doi.org/10.1016/j.renene.2018.10.082
  106. Zriba, A., Guellouz, M. S., & Jemni, A. (2021). Design and optimization of a tomato drying solar cell. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(6), 1-14. https://doi.org/10.1007/s40430-021-03010-8