Document Type : Research Note

Authors

1 Department of Industrial Engineering & Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

2 Department of Economics, Kharazmi University, Tehran, Iran.

Abstract

Clean solar energy is one of the best sources of energy. Solar power plants can generate electricity in Iran due to their large number of sunny days. This paper presents a short-term forecasting approach based on artificial neural networks (ANNs) for selected solar power plants in Iran and ranks the input variables of the neural network according to their importance. Two solar power plants in Hamadan province (Amirkabir and Khalij-Fars) were selected for the project. The output of solar power plants is dependent on weather conditions. Solar radiation on the horizontal plane, air temperature, air pressure, day length, number of sunny hours, cloudiness, and airborne dust particles are considered input variables in this study to predict solar power plant output. Forecasting model selection is based on considering zero and nonzero quantities of target variables. The results show that solar production forecasting based on meteorological parameters in the Khalij-Fars is more accurate than Amirkabir. The global solar radiation, air temperature, number of sunny hours, day length, airborne dust particles, cloudiness, air pressure, and dummy variables[1] are the order of the most important inputs to solar power generation. Results show simultaneous influences of radiation and temperature on solar power plant production.
 
[1]. The first half of the year is counted as one, and the second half is counted as zero.

Keywords

Main Subjects

  1. Bhavani, M., Vijaybhaskar Reddy, K., Mahesh, K., & Saravanan, S. (2021). Impact of variation of solar irradiance and temperature on the inverter output for grid connected photo voltaic (PV) system at different climate conditions. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.06.120
  2. Bugała, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czekała, W., & Lewicki, A. (2018). Short-term forecast of generation of electric energy in photovoltaic systems. Renewable and Sustainable Energy Reviews, 81, 306-312. https://doi.org/https://doi.org/10.1016/j.rser.2017.07.032
  3. Carra, E., Ballestrín, J., Polo, J., Barbero, J., & Fernández-Reche, J. (2018). Atmospheric extinction levels of solar radiation at Plataforma Solar de Almería. Application to solar thermal electric plants. Energy, 145, 400-407. https://doi.org/https://doi.org/10.1016/j.energy.2017.12.111
  4. (2021). Country analysis executive summary: Iran. T. U. S. E. I. Administration. https://www.eia.gov/international/content/analysis/countries_long/Iran/pdf/iran_exe.pdf
  5. Ghritlahre, H.K., & Prasad, R.K. (2018). Application of ANN technique to predict the performance of solar collector systems - A review. Renewable and Sustainable Energy Reviews, 84, 75-88. https://doi.org/https://doi.org/10.1016/j.rser.2018.01.001
  6. Gorjian, S., Ghobadian, B., & Tavakkoli Hashjin, T. (2015). Modeling of solar radiation potential in Iran using artificial neural networks. Journal of Agricultural Science and Technology (JAST), 17(7), 1707-1723. http://jast.modares.ac.ir/article-23-7341-en.html
  7. Halabi, L.M., Mekhilef, S., & Hossain, M. (2018). Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Applied Energy, 213, 247-261. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.01.035
  8. (2017). Statistics and information request system. Retrieved 2018-07-01 from https://www.igmc.ir/statistical-center
  9. (2018, 2018/07/01). Statistical center - IGMC. https://www.igmc.ir/statistical-center
  10. (2018). I.R. Of IRAN Meteorological Organization. Retrieved 2018/09/01 from https://data.irimo.ir/
  11. Jahani, B., Dinpashoh, Y., & Raisi Nafchi, A. (2017). Evaluation and development of empirical models for estimating daily solar radiation. Renewable and Sustainable Energy Reviews, 73, 878-891. https://doi.org/https://doi.org/10.1016/j.rser.2017.01.124
  12. Jung, Y., Jung, J., Kim, B., & Han, S. (2020). Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. Journal of Cleaner Production, 250, 119476. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119476
  13. Khosravi, A., Koury, R.N.N., Machado, L., & Pabon, J.J.G. (2018). Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. Journal of Cleaner Production, 176, 63-75. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.065
  14. Loghmari, I., Timoumi, Y., & Messadi, A. (2018). Performance comparison of two global solar radiation models for spatial interpolation purposes. Renewable and Sustainable Energy Reviews, 82, 837-844. https://doi.org/https://doi.org/10.1016/j.rser.2017.09.092
  15. Ma, T., Li, M., & Kazemian, A. (2020). Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously. Applied Energy, 261, 114380. https://doi.org/https://doi.org/10.1016/j.apenergy.2019.114380
  16. Mamipour, S., Beheshtipour, H., Feshari, M., & Amiri, H. (2019). Factors influencing carbon dioxide emissions in Iran’s provinces with emphasis on spatial linkages. Environmental Science and Pollution Research, 26(18), 18365-18378. https://doi.org/https://doi.org/10.1007/s11356-019-05192-0
  17. Map, G. (2023a). Distance of Hamedan airport to Amirkabir solar power plant. https://www.google.com/maps/dir/Hamadan+Airport,+Hamadan+Province,+Hamedan,+Sardar+Hamedani+Square,+Iran/Amir+Kabir+Solar+Power+Plant,+Hamadan+Province,+Iran/@34.9217361,48.4903413,12z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1s0x3ff19279257e16c5:0x5fb78c39f38ea2dc!2m2!1d48.5378564!2d34.8673!1m5!1m1!1s0x3ff18fe4d74317c7:0xdaf5af4141bb3d0e!2m2!1d48.5660117!2d34.9669339!3e2
  18. Map, G. (2023b). Distance of Hamedan airport to Khalij Fars solar power plant. https://www.google.com/maps/dir/Hamadan+Airport,+Hamadan+Province,+Hamedan,+Sardar+Hamedani+Square,+Iran/Persian+Gulf+Solar+Power+Plant,+Hamadan+Province/@34.9586888,48.5793117,11z/data=!4m14!4m13!1m5!1m1!1s0x3ff19279257e16c5:0x5fb78c39f38ea2dc!2m2!1d48.5378564!2d34.8673!1m5!1m1!1s0x3ff227025e5464e9:0x3af582d0f3d87ab2!2m2!1d48.7579169!2d35.0126439!3e0).
  19. (2009). Retrieved 23-06-2019 from https://earthobservatory.nasa.gov/features/EnergyBalance/page4.php
  20. Olden, J.D., Joy, M.K., & Death, R.G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178(3), 389-397. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2004.03.013
  21. Piri, J., & Kisi, O. (2015). Modelling solar radiation reached to the Earth using ANFIS, NN-ARX, and empirical models (Case studies: Zahedan and Bojnurd stations). Journal of Atmospheric and Solar-Terrestrial Physics, 123, 39-47. https://doi.org/https://doi.org/10.1016/j.jastp.2014.12.006
  22. Professionals, S.E.S.F. (2021). MERRA-2 METEOROLOGICAL RE-ANALYSIS. Retrieved 05/17/2018 from http://www.soda-pro.com/web-services/meteo-data/merra
  23. Siva Krishna Rao K., D.V., Premalatha, M., & Naveen, C. (2018). Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study. Renewable and Sustainable Energy Reviews, 91, 248-258. https://doi.org/https://doi.org/10.1016/j.rser.2018.03.096
  24. (2021). Renewable power plants geographical map. Retrieved 08/05/2021 from http://www.satba.gov.ir/suna_content/media/image/2020/03/8144_orig.png
  25. Shireen, T., Shao, C., Wang, H., Li, J., Zhang, X., & Li, M. (2018). Iterative multi-task learning for time-series modeling of solar panel PV outputs. Applied Energy, 212, 654-662. https://doi.org/https://doi.org/10.1016/j.apenergy.2017.12.058
  26. Vaka, A.S., & Talukdar, P. (2020). Novel inverse heat transfer technique for estimation of properties and location-specific process parameters of roof-mounted solar PV plants. Thermal Science and Engineering Progress, 19, 100657. https://doi.org/https://doi.org/10.1016/j.tsep.2020.100657
  27. Zaaoumi, A., Bah, A., Ciocan, M., Sebastian, P., Balan, M. C., Mechaqrane, A., & Alaoui, M. (2021). Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models. Renewable Energy, 170, 620-638. https://doi.org/https://doi.org/10.1016/j.renene.2021.01.129
  28. Zhao, W., Zhang, H., Zheng, J., Dai, Y., Huang, L., Shang, W., & Liang, Y. (2021). A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants. Energy, 223, 120026. https://doi.org/https://doi.org/10.1016/j.energy.2021.120026