Document Type : Research Article

Authors

1 Division of Industrial Convergence Systems Engineering, Dong-Eui University, Busan, Republic of Korea.

2 Department of e-Business, Busan University of Foreign Studies, Busan, Republic of Korea.

3 Department of Systems Management and Engineering, Pukyong National University, Busan, Republic of Korea.

Abstract

The power generation sector accounts for a significant portion of GHG emissions, and many countries strive for the large-scale adoption of renewable generation. Although the intermittent nature of renewables brings about complications in energy system planning, the share of renewable generations is increasing to the greatest extent. The wind generation has drawn increasing attention to expanding the use of renewable energy to reduce carbon emissions from the power generation sector, and the estimation of capacity factor is crucial in energy system modeling. This study develops a mathematical model for estimating the capacity factor of a wind farm with the consideration of outage probability of individual turbines. In addition, the power curves and wind speed distribution of the wind farm need to be estimated, which is demonstrated with a wind farm in Korea. It is asserted that the proposed method may render the wind farm capacity factor effectively. Thus, the results from this study can be useful for energy system modeling involving wind generations.

Keywords

Main Subjects

  1. Ayoub, M.F.M. (2020). Reliability assessment of wind turbines. In K.Y. Maalawi (Eds.), Design optimization of wind energy conversion systems with applications (pp. 183-194). IntechOpen. https://doi.org/10.5772/intechopen.89747
  2. Billinton, R., Wee, C.L., & Hamoud, G. (1982). Digital computer algorithms for the calculation of generating capacity reliability indices. IEEE Transactions on Power Apparatus and Systems, PAS-101(1), 203-211. https://doi.org/10.1109/TPAS.1982.317339
  3. Billinton, R., & Allan, R.N. (1996). Reliability evaluation of power systems (2nd ed.), Springer. https://doi.org.10.1007/978-1-4899-1860-4
  4. Bokde, N.D., Feijoo, A.E., & Villanueva, D. (2018). Wind turbine power curves based on the Weibull cumulative distribution function. Applied Sciences, 8, 1-18. https://doi.org/10.3390/app8101757
  5. Cooperman, A., & Martinez, M. (2015). Load monitoring for active control of wind turbines. Renewable and Sustainable Energy Reviews, 41, 189-201. https://doi.org/10.1016/j.rser.2014.08.029
  6. Dhople, S.V., & Domínguez-García, A.D. (2012). A framework to determine the probability density function for the output power of wind farms. Proceedings of 2012 IEEE North American Power Symposium, 1-6. https://doi.org/10.1109/NAPS.2012.6336368
  7. Ditkovich, Y., & Kuperman, A. (2014). Comparison of three methods for wind turbines capacity factor estimation. The Scientific World Journal, 2014, 805238. https://doi.org/10.1155/2014/805238
  8. Ihaddadene, R., Ihaddadene, N., & Mostefaoui, M. (2016). Estimation of monthly wind speed distribution basing on hybrid Weibull distribution. World Journal of Engineering, 13(6), 509-515. https://doi.org/10.1108/WJE-09-2016-0084
  9. Kim, K.H., Ju, Y.C., & Kim, D.H. (2006). Power performance testing and uncertainty analysis for a 1.5MW wind turbine. Journal of Korean Solar Energy Society, 26(4), 63-71. https://www.ksesjournal.co.kr/articles/pdf/Dx8R/kses-2006-026-04-0.pdf
  10. Kim, K.H., & Hyun, S.G. (2010). Power performance testing and uncertainty analysis for a 3.0MW wind turbine. Journal of Korean Solar Energy Society, 30(6),10-15. https://www.ksesjournal.co.kr/articles/pdf/byqn/kses-2010-030-06-0.pdf
  11. Larsen, T.C., & Rez P. (2017). Estimates of the capacity factor of wind farms in the United States. Journal of Sustainable Energy Engineering, 5(3), 194-206. https://doi.org/10.7569/jsee.2017.629514
  12. Lee, J.C.Y., Fields, M.J., & Lundquist, J.K. (2018). Assessing variability of wind speed: Comparison and validation of 27 methodologies. Wind Energy Science, 3, 845-868. https://doi.org/10.5194/wes-3-845-2018
  13. Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarze, N., & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322-335. https://doi.org/10.1016/j.enconman.2015.11.015
  14. Paik, C., Chung, Y., & Kim, Y.J. (2021). ELCC-based capacity credit estimation accounting for uncertainties in capacity factors and its application to solar power in Korea. Renewable Energy, 164, 833-841. https://doi.org/10.1016/j.renene.2020.09.129
  15. Pérez, J.M.P., Márquez, F.P.G., Tobias, A., & Papaelias, M. (2013). Wind turbine reliability analysis. Renewable and Sustainable Energy Reviews, 23, 463-472. https://doi.org/10.1016/j.rser.2013.03.018
  16. Pfaffel, S., Faulstich, S., & Rohrig, K. (2017). Performance and reliability of wind turbines: A review. Energies, 10, 1904. https://doi.org.10.3390/en10111904
  17. Söder, L, Tómasson, E., Estanqueiro, A., Flynn, D., Hodge, B.-M., Kiviluoma, J., Korpås, M., Neau, E., Couto, A., Pudjianto, D., Strbac, G., Burke, D., Gómez, T., Das, K., Cutululis, N.A., Hertem, D.V., Höschle, H., Matevosyan, J., von Roon, S., Carlini, E.M., Caprabianca, M., & de Vries, L. (2020). Review of wind generation within adequacy calculations and capacity markets for different power systems. Renewable and Sustainable Energy Reviews, 119, 109540. https://doi.org/10.1016/j.rser.2019.109540
  18. Sohoni, V., Gupta, S.C., & Nema, R.K. (2016). A critical review on wind turbine power curve modelling techniques and their applications in wind based energy systems. Journal of Energy, 2016, 8519785. https://doi.org/10.1155/2016/8519785
  19. Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69(347), 730-737. https://doi.org/10.2307/2286009
  20. Sulaeman, S., Benidris, M., Mitra, J., & Singh, C. (2017). A wind farm reliability model considering both wind variability and turbine forced outages. IEEE Transactions on Sustainable Energy, 8(2), 629-637. http://doi.org/10.1109/TSTE.2016.2614245