Document Type : Review Article


1 Bowen University

2 Department of Mechanical Engineering Science, University of Johannesburg, South Africa.

3 Biochemistry Department, Covenant University, Ota, Nigeria..



Several researchers have reported the prospects of biofuel commercialization in several countries across the globe. With over 400 million tons of biomass and 150 million tons of agro-waste produced annually in most developing countries, the prospect of biofuel commercialization looks promising. However, it is crucial to adopt a forward-thinking approach and anticipate potential challenges that may arise, building upon the lessons learned from current obstacles. This paper review addresses the current issues that have discouraged some developing countries against embracing biofuels as an economical tool to mitigate poverty. Also, future challenges that may scuttle biofuel commercialization in developing countries was discussed to provide a workable blueprint towards wealth creation. This review identified policies and political unwillingness as fundamental challenges that must be overcome in developing countries to attract investors. Other identified salient challenges include mono-economy, poor technical know-how, poor technology, government hypocrisy, lack of funds, sustainable biomass resources, inadequate farmland, poor policies, and weak infrastructure. It is recommended that conscious short- and long-term planning be implemented to actualize biofuel commercialization in developing countries.


Main Subjects

  1. Zhou Adrian, and Elspeth Thomson. (2009), The development of biofuels in Asia, Applied Energy, 86 : 11-20.
  2. Biofuel International (2020), US ethanol industry generated $43 billion in 2019, despite policy challenges  (Accessed 3/4/2020)
  3. Kemausuor, F., Akowuah, J.O., Ofori, E., (2013). Assessment of feedstock options for biofuels production in Ghana. J. Sust. Bioenergy Syst. 3, 119–128.
  4. Elegbede Isa and Guerrero Cinthya (2016), Algae Biofuel in the Nigerian Energy Context, Environmental and Climate Technologies, 2016/17: 44-60
  5. Emetere Moses Eterigho, Solomon Jack-Quincy, Akolade Adejumo, Oluwatobi Dauda, Israel Osunlola, Damola Adelekan and Oladipupo Adeyemi (2018). Empirical Analysis of biodiesel effect on the automobile properties of diesel engine: A case study of Olive and Soya biomass, Energy Science & Engineering, 6(6): 693-705
  6. Emetere Moses Eterigho, TA Adesina, (2019), Short review on the prospects of human biogas utilization in Nigeria, IOP Conference Series: Earth and Environmental Science 331 (1): 012051
  7. IRENA (2019). Global energy transformation: A roadmap to 2050 (2019 edition), International Renewable Energy Agency, Abu Dhabi. (Accessed 11/5/2023)
  8. Szetela Beata, Bekhzod Djalilov, and Raufhon Salahodjaev (2022). Renewable Energy and CO2 Emissions in Top Natural Resource Rents Depending Countries: The Role of Governance, Frontiers in Energy Research, 10: 1-5. DOI:10.3389/fenrg.2022.872941
  9. ADBG, (2021). Nigeria - Green Energy & Biofuels (Geb) Bio-Refinery Project - SEFA Project Summary Note. biofuels-geb-bio-refinery-project-sefa-project-summary-note
  10. Aduloju Bunmi, (2021). Nigeria puts brakes on ambitious biorefinery plan.
  11. Business_list (2022). Best Biomass Fuel Companies in Nigeria.
  12. Canabarro N.I., Silva-Ortiz P., Nogueira L.A.H., Cantarella H., Maciel-Filho R., Souza G.M., (2023).Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala, Renewable and Sustainable Energy Reviews, 171, 113019,
  13. Guyomard Hervé, Forslund Agneta and Dronne Yves (2011), Biofuels and World Agricultural Markets: Outlook for 2020 and 2050, (Accessed 3/4/2020)
  14. GAIN (2019), Brazil: Biofuels Annual, (Accessed 3/4/2020)
  15. Tiwari, S., Jadhav, S.K., Sharma, M., Tiwari, K.L., 2014. Fermentation of waste fruits forbioethanol production. Asian J. Biol. Sci. 7, 30–34.
  16. DOE, U. S. National Algal Biofuels Technology Roadmap. Maryland, 2010.
  17. Biofuel (2019), Biofuels and Bioenergy.  (Accessed 3/4/2020)
  18. Wang T., (2019). Global biofuel production by select country 2018. (Accessed 4/4/2020)
  19. Defterios John, (2020), Why oil prices are crashing and what it means, (Accessed 04/04/2020)
  20. Agricdemy, (2020), Nigeria agriculture data. (Accessed 02/04/2020)
  21. Lee Justin (2017), Nigeria to register 16M farmers in biometric database.      (Accessed 02/04/2020)
  22. Oji Chuka (2020), Snail Farming Business Plan In Nigeria, (Accessed 02/04/2020)
  23. IEA (2012). Energy balance for Nigeria . OECD/IEA . http:// Accessed 1st September 2012.
  24. Garba, N.A. and Umar Zangina, U. (2015) ‘Rice straw & husk as potential sources for mini-grid rural electricity in Nigeria’, International Journal of Applied Sciences and Engineering Research, Vol. 4, No. 4, pp.523–530.
  25. Ogbonna, I.O., Moheimani, N.R. and Ogbonna, J.C. (2015) ‘Potentials of microalgae biodiesel production in Nigeria’, Nigerian Journal of Biotechnology, Vol. 29, pp.44–55.
  26. Moses, N., Mohammed, S., Saidu, H., Galadima, A.I., Umar, D.M., Abubakar, K., Kefa, M., Billah, C., (2017). Determination of physicochemical parameters and riparian land effect on kwadon stream. J. Adv. Res. Design (ISSN: 2289-7984) 36, 13–24.
  27. Oyedele O. A., Oladipo I. O. & Adebayo A. O., (2015), Investigation into Edible and Non-edible Oil Potentials of Tiger Nut (Cyperus esculentus) Grown in Nigeria, Global journal of Engineering, Design & Technl., 4(4):20-24
  28. World Bank (2020). orld Bank Open Data Nigeria. (Accessed 4/4/2020)
  29. IITA (1990), Cassava in tropical Africa:A Reference Manual (Accessed 4/4/2020)
  30. Kristen Schubert and Jerrod Mason, (2015), Cost-Benefit Analysis of USAID/Nigeria's MARKETS II Program. (Accessed 4/4/2020)
  31. AMREC (2007). Mapping of soybean production areas in Nigeria. (Accessed 4/4/2020)
  32. Ajeigbe Hakeem A., Farid Waliyar, Ayuba Kunihya, Babu N Motagi, Candidus A Echekwu, Damilola Eniaiyeju and Abubakar Inuwa, (2015). A Farmer's Guide to Profitable Groundnut Production in Nigeria.  (Accessed 4/4/2020)
  33. Bikramjit Sinha and Indranil Biswas, (2008). Rural Energy security in India: reality checks. (Accessed 4/4/2020)
  34. Emetere Moses Eterigho & Akinyemi M.L. (2017) Atmospheric Dynamics of Air Pollution Dispersion and Sustainable Environment in Nigeria, Journal of Urban and Environmental Engineering, 11 (1): 51-57
  35. FMARD-Federal Ministry of Agriculture and Rural Development. (2016), The Agriculture Promotion Policy (2016-2020). Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria. pp.1-59.
  36. Kiggundu Nicholas, Isa Kabenge, Samuel Gyebi Arhin, Noble Banadda, (2017). Impacts of Biofuel Policies on Welfare and Food Security: Assessing the Socioeconomic and Environmental Tradeoffs in Sub-Saharan Africa, International Journal of Renewable Energy Research, 7(4), 2162-2171
  37. Schnepf, R., and B. D. Yacobucci. (2013). Renewable Fuel Standard (RFS): Overview and Issues. Congressional Research Service, Washington, DC.
  38. Urbanchuk, J.M. (2013). Contribution of the Ethanol Industry to the Economy of the United States. (Accessed 04/04/2020)
  39. Renewable Fuels Association (RFA). 2012. 2012 Ethanol Industry Outlook. Renewable Fuels Association, Washington, DC.
  40. Hoekman, S. Kent. (2009): Biofuels in the US–challenges and opportunities. Renewable energy 34: 14-22.
  41. OGNPBI (2007), Official Gazette of the Nigerian Bio-fuel Policy and Incentives. (Accessed 04/04/2020)
  42. NS Energy, (2019). Top five countries for biofuel production across the globe, (Acessed 04/04/2020)
  43. Oyatoye, E. T. O. (1994). The impact of Rural Roads on Agricultural Development in Nigeria: A case study of Kwara State. Ife Journal of Agriculture, 16, 114-122.
  44. Akinola, S. R. (2003). Rural Roads and Settlements Linkage: An Analysis of Socio-economic Interactions in Rural Area of Ife Region, Osun State, Nige- ria. Research for Development, 17 (1&2), 1-25.
  45. Nordsid, (2019), Price And Need For Reliable Electricity Are Spurring Solar Sales To Businesses. (Acessed 4/4/2020)
  46. Lackner M, Winter F, Palotas A (2013) Combustion: from basics to applications. Wiley-VCH, Weinheim. ISBN 978-3-527-33376-9
  47. Hammer, S.K., Zhang, Y., Avalos, J.L., 2020. Mitochondrial compartmentalization confers specificity to the 2-ketoacid recursive pathway: increasing isopentanol production in Saccharomyces cerevisiae. ACS synthetic biology 9 (3), 546–555.
  48. Razaghifard R. Algal biofuels. Photosynth Res 2013;117:207e19
  49. Kumar, V., Sindhu, R. K., & Kumar, S. (2018). Comparative analysis of green diesel versus petro-diesel in compression ignition engine. BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 11(1), 128-135.
  50. Pragya, N., & Pandey, K. K. (2016). Life cycle assessment of green diesel production from microalgae. Renewable energy, 86, 623-632.
  51. Jutakridsada, P.; Saengprachatanarug, K.; Kasemsiri, P.; Hiziroglu, S.; Kamwilaisak, K.; Chindaprasirt, P. Bioconversion of Saccharum officinarum leaves for ethanol production using separate hydrolysis and fermentation processes. Waste and Biomass Valorization 2019, 10, 817-825,
  52. Tarafdar, A., Sirohi, R., Gaur, V.K., Kumar, S., Sharma, P., Varjani, S., Pandey, H.O., Sindhu, R., Madhavan, A., Rajasekharan, R., 2021. Engineering interventions in enzyme production: Lab to industrial scale. Bioresource technology 124771.
  53. Subramani Velu, Angelo Basile, T. Nejat Veziroglu (2015). Compendium of Hydrogen Energy Hydrogen Production and Purification 1st Edition - May 23, 2015 eBook ISBN: 9781782423836. Hardcover ISBN: 9781782423614
  54. Hood Elizabeth E., and Lorenz Bauer (2016). Catalysts and Enzymes in Biofuel Production. 30th/01/2022.
  55. Ashraf, A.; El-Desouky, M.G.; El-Afify, M.A. (2021).Thermal and Spectroscopic Studies of Some Prepared Metal Complexes and Investigation of their Potential Anticancer and Antiviral Drug Activity against SARS-CoV2 by Molecular Docking Simulation. Biointerface Resarch in Applied Chemistry, 12, 1053-1075,
  56. Hashemi, S.S.; Karimi, K.; Karimi, A.M. Ethanolic ammonia pretreatment for efficient biogas production from sugarcane bagasse. Fuel 2019, 248, 196-204,
  57. Rajput, A.A.; Visvanathan, C. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. Journal of environmental management 2018, 221, 45-52,
  58. Zhang, Q.; Hu, J.; Lee, D.-J. Biogas from anaerobic digestion processes: Research updates. Renewable Energy 2016, 98, 108-119,
  59. Mohamed G. El-Desouky, Muhammad A. Khalil, Ashraf A. El-Bindary, Mohamed A. El-Bindary. Biological, Biochemical and Thermochemical Techniques for Biofuel Production: an Updated Review Volume 12, Issue 3, 2022, 3034 – 3054
  60. Kim, B., & Gadd, G. (2019). Anaerobic fermentation. In Prokaryotic Metabolism and Physiology (pp. 230-267). Cambridge: Cambridge University Press. doi:10.1017/9781316761625.008
  61. Wen, Z., Ledesma-Amaro, R., Lu, M., Jin, M., Yang, S., 2020. Metabolic Engineering of Clostridium cellulovorans to improve butanol production by consolidated bioprocessing. ACS Synthetic Biology. 9 (2), 304–315.
  62. Rajeswari Shanmugam, Divya Baskaran, Panchamoorthy Saravanan, Manivasagan Rajasimman, Natarajan Rajamohan, Yasser Vasseghian,(2022). Production of ethanol from biomass – Recent research, scientometric review and future perspectives, Fuel, 317, 123448,
  63. Zhu, L., Li, P., Sun, T., Kong, M., Li, X., Ali, S., Liu, W., Fan, S., Qiao, J., Li, S., 2020. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresource technology. 313, 123724.
  64. Wang, P., Zhang, J., Feng, J., Wang, S., Guo, L., Wang, Y., Lee, Y.Y., Taylor, S., McDonald, T., Wang, Y., 2019. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass. Bioresource technology. 281, 217–225.
  65. Sathesh-Prabu, C., Kim, D., Lee, S.K., 2020. Metabolic engineering of Escherichia coli for 2, 3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system. Bioresource technology. 309, 123361.
  66. Nitschel, R., Ankenbauer, A., Welsch, I., Wirth, N.T., Massner, C., Ahmad, N., McColm, S., Borges, F., Fotheringham, I., Takors, R., Blombach, B., 2020. Engineering Pseudomonas putida KT2440 for the production of isobutanol. Eng. Life Sci. 20 (5-6), 148–159.
  67. Fu, H., Hu, J., Guo, X., Feng, J., Yang, S.-T., Wang, J., 2021. Butanol production from Saccharina japonica hydrolysate by engineered Clostridium tyrobutyricum: The effects of pretreatment method and heat shock protein overexpression. Bioresource Technology 335, 125290.
  68. Wess, J., Brinek, M., Boles, E., 2019. Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Biotechnology for Biofuels. 12 (1), 173.
  69. Yang, S., Mohagheghi, A., Franden, M.A., Chou, Y.-C., Chen, X., Dowe, N., Himmel, M.E., Zhang, M., 2016. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnology for Biofuels. 9 (1), 189.
  70. Oliver, J.W.K., Machado, I.M.P., Yoneda, H., Atsumi, S., 2013. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA 110 (4), 1249–1254.
  71. Park, J.M..,Rathnasingh, C..,Song, H., 2017. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production. Journal of Industrial Microbiology and Biotechnology. 44(3), 431-441.
  72. Yang, Z.,and Zhang, Z., 2018. Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnology for Biofuels. 11 (1), 35.
  73. Rodriguez, G.M., Atsumi, S., 2014. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metabolic Engineering. 25, 227–237.
  74. Sinha, M., Weyda, I., Sørensen, A., Bruno, K.S., Ahring, B.K., 2017. Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express. 7 (1), 18.
  75. Crepin, L., Barthe, M., Leray, F., Guillouet, S.E., 2018. Alka(e)ne synthesis in Cupriavidus necator boosted by the expression of endogenous and heterologous ferredoxin–ferredoxin reductase systems. Biotechnology and Bioengineering 115 (10), 2576–2584.
  76. Yu, A., Zhao, Y., Li, J., Li, S., Pang, Y., Zhao, Y., Zhang, C., Xiao, D., 2020. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Microbiology Open. 9 (7), e1051
  77. Tsai, Y.-Y., Ohashi, T., Wu, C.-C., Bataa, D., Misaki, R., Limtong, S., Fujiyama, K., 2019. Delta 9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. Journal of Bioscience and Bioengineering. 127 (4), 430–440.
  78. Ferreira, R., Teixeira, P.G., Siewers, V., Nielsen, J., 2018. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proc Natl Acad Sci USA 115 (6), 1262–1267.
  79. Tai, M., Stephanopoulos, G., 2013. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering. 15, 1–9
  80. Nicha Sritong, Kamphol Promjiraprawat, Bundit Limmeechokchai, (2014). CO2 Mitigation in the Road Transport Sector in Thailand: Analysis of Energy Efficiency and Bio-energy, Energy Procedia, 52:131-141,
  81. Khan, A., Jamil, F. & Khan, N.H. (2019). Decomposition analysis of carbon dioxide emissions in Pakistan. SN Appl. Sci. 1, 1012 .
  82. Geraldine Henningsen, Arne Henningsen, Sascha T. Schröder and Simon Bolwig, (2014). "The Development of Environmental Productivity: the Case of Danish Energy Plants," IFRO Working Paper 2014/04, University of Copenhagen, Department of Food and Resource Economics.
  83. Anderson, K., Rausser, G., and Swin- nen, J. (2013). Political economy of public policies: insights from distortions to agricultural and food markets. Journal of Economic Literature 51(2), 423-477.
  84. Statista (2021). Petrol import into Nigeria between the 1st quarter of 2018 and the 1st quarter of 2021.
  85. Zilberman David, Gal Hochman, Scott Kaplan, and Eunice Kim (2014). Political Economy of Biofuel, Choices, 29(1): 1–5
  86. Robbins Martin, (2011). Policy: Fuelling politics, Nature, 474: S22–S24
  87. Notaras M. (2018). All Biofuel Policies Are Political,
  88. Cotula, L. (2009). Land grab or development opportunity?: Agricultural investment and international land deals in Africa. London: International Institute for Environment and Development (IIED)
  89. Monsalve, S. Suárez, Monsalve Suárez, Ulrike Bickel, Frank Garbers, Lucia Goldfarb Vilmar Schneider. (2008). Agrofuels in Brazil.
  90. McMichael, P. (2009). The agrofuels project at large. Critical Sociology, 35(6): 825–839
  91. Franco, J., Levidow, L., Fig, D., Goldfarb, L., Hönicke, M. and Mendonca, M. L. (2010). Assumptions in the European Union biofuels policy: frictions with experiences in Germany, Brazil and Mozambique. The Journal of Peasant Studies, 37(4): 661–98.
  92. Gillon, S. (2010). Fields of dreams: negotiating an ethanol agenda in the Midwest United States. The Journal of Peasant Studies, 37(4): 723–48.
  93. Hollander, G. (2010). Power is sweet: sugarcane in the global ethanol assemblage. The Journal of Peasant Studies, 37(4): 699–721.