Document Type : Review Article

Authors

1 Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.

2 Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.

3 Department of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran.

Abstract

Floating photovoltaic solar systems offer numerous advantages, including reduced land usage, diminished water evaporation, and lowered thermal losses compared to terrestrial installations. If widely adopted, this system has the potential to generate a staggering 10,600 TWh of electricity. The widespread implementation of this technology could curtail water evaporation by approximately 30%. Floating solar power plants operate at temperatures about 20°C cooler than their terrestrial counterparts, enabling floating panels to yield up to 33.3% more energy. Furthermore, floating photovoltaic systems exhibit an 18.18% greater efficacy in curbing greenhouse gas emissions compared to their land-based counterparts. The heightened adoption of this system is driven by diverse factors, including escalating energy demand, ecological concerns, land-use constraints, and water scarcity, all contributing to sustainability. Despite the manifold benefits of these systems, there exist drawbacks associated with this technology, such as heightened panel corrosion, challenges in cleaning, and potential adverse environmental impacts that need to be addressed. This study meticulously examines the merits and challenges of floating photovoltaic systems in comparison to land-based installations through the content analysis method, meticulously categorizing pertinent research within the existing literature. Tailored approaches to cooling and cleaning, suited to the distinct installation conditions and environments of these systems, are concisely outlined. Through a comprehensive literature review and a meticulous comparison of cooling methods, it has been ascertained that the application of such strategies for floating solar plants yields an efficiency increase of 5-7% in the short term. Consequently, this study furnishes an initial guide for researchers and designers engaged in the development of both floating and land-based solar photovoltaic systems.

Keywords

Main Subjects

  1. Abid, M., Abid, Z., Sagin, J., Murtaza, R., Sarbassov, D., & Shabbir, M. (2019). Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries. International Journal of Environmental Science and Technology, 16(3), 1755–1762. https://doi.org/10.1007/s13762-018-2080-5
  2. Agrawal, K. K., Jha, S. K., Mittal, R. K., & Vashishtha, S. (2022). Assessment of floating solar PV (FSPV) potential and water conservation: Case study on Rajghat Dam in Uttar Pradesh, India. Energy for Sustainable Development, 66, 287–295. https://doi.org/10.1016/j.esd.2021.12.007
  3. Akrami, E., Gholami, A., Ameri, M., & Zandi, M. (2018). Integrated an innovative energy system assessment by assisting solar energy for day and night time power generation: Exergetic and Exergo-economic investigation. Energy Conversion and Management, 175, 21–32. https://doi.org/10.1016/j.enconman.2018.08.075
  4. Akrami, E., Khazaee, I., & Gholami, A. (2018). Comprehensive analysis of a multi-generation energy system by using an energy-exergy methodology for hot water, cooling, power and hydrogen production. Applied Thermal Engineering, 129, 995–1001. https://doi.org/10.1016/j.applthermaleng.2017.10.095
  5. Al-Shabi, M., Ghenai, C., Bettayeb, M., Faraz Ahmad, F., & El Haj Assad, M. (2021). Estimating PV models using multi-group salp swarm algorithm. IAES International Journal of Artificial Intelligence (IJ-AI), 10(2), 398. https://doi.org/10.11591/ijai.v10.i2.pp398-406
  6. Aldawoud, A., Aldawoud, A., Aryanfar, Y., Assad, M. E. H., Sharma, S., & Alayi, R. (2022). Reducing PV soiling and condensation using hydrophobic coating with brush and controllable curtains. International Journal of Low-Carbon Technologies. https://doi.org/10.1093/ijlct/ctac056
  7. AlMallahi, M., Nooman, El Haj Assad, M., AlShihabi, S., & Alayi, R. (2022). Multi-criteria decision-making approach for the selection of cleaning method of solar PV panels in United Arab Emirates based on sustainability perspective. International Journal of Low-Carbon Technologies, 17, 380–393. https://doi.org/10.1093/ijlct/ctac010
  8. Ameri, M., Minoofar, A., Gholami, A., Gholami, A., Eslami, S., & Zandi, M. (2023). Energy Efficiency and Solar Energy Implementation Opportunities for Dairy Farms. 11th Global Conference on Global Warming (GCGW-2023), 1–4.
  9. Aryanfar, A., Gholami, A., Pourgholi, M., Shahroozi, S., Zandi, M., & Khosravi, A. (2020). Multi-criteria photovoltaic potential assessment using fuzzy logic in decision-making: A case study of Iran. Sustainable Energy Technologies and Assessments, 42(April), 100877. https://doi.org/10.1016/j.seta.2020.100877
  10. Aryanfar, A., Gholami, A., Pourgholi, M., & Zandi, M. (2021). Multicriteria wind potential assessment using fuzzy logic in decision making: A case study of Iran. Wind Energy, February, we.2640. https://doi.org/10.1002/we.2640
  11. Ascencio-Vásquez, J., Kaaya, I., Brecl, K., Weiss, K.-A., & Topič, M. (2019). Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules. Energies, 12(24), 4749. https://doi.org/10.3390/en12244749
  12. Azami, S., Vahdaty, M., & Torabi, F. (2017). Energy Equipment and Systems Theoretical analysis of reservoir-based floating photovoltaic plant for 15-khordad dam in Delijan. Energy Equipment and Systems, 5(2), 211–218. https://doi.org/10.22059/ees.2017.25760
  13. Azmi, M. S. M., Othman, M. Y. H., Ruslan, M. H. H., Sopian, K., & Majid, Z. A. A. (2013). Study on electrical power output of floating photovoltaic and conventional photovoltaic. AIP Conference Proceedings, 1571(1), 95–101. https://doi.org/10.1063/1.4858636
  14. Cai, S., Bao, G., Ma, X., Wu, W., Bian, G.-B., Rodrigues, J. J. P. C., & de Albuquerque, V. H. C. (2019). Parameters optimization of the dust absorbing structure for photovoltaic panel cleaning robot based on orthogonal experiment method. Journal of Cleaner Production, 217, 724–731. https://doi.org/10.1016/j.jclepro.2019.01.135
  15. Campana, P. E., Wästhage, L., Nookuea, W., Tan, Y., & Yan, J. (2019). Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems. Solar Energy, 177, 782–795. https://doi.org/10.1016/j.solener.2018.11.045

 

  1. Cazzaniga, R., Cicu, M., Rosa-Clot, M., Rosa-Clot, P., Tina, G. M., & Ventura, C. (2018). Floating photovoltaic plants: Performance analysis and design solutions. Renewable and Sustainable Energy Reviews, 81, 1730–1741. https://doi.org/10.1016/j.rser.2017.05.269
  2. Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., & Pietzcker, R. C. (2017). The underestimated potential of solar energy to mitigate climate change. Nature Energy, 2(9), 17140. https://doi.org/10.1038/nenergy.2017.140
  3. Daneshyar, M. (1978). Solar radiation statistics for Iran. Solar Energy, 21(4), 345–349. https://doi.org/10.1016/0038-092X(78)90013-0
  4. Deb, D., & Brahmbhatt, N. L. (2018). Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. Renewable and Sustainable Energy Reviews, 82(October), 3306–3313. https://doi.org/10.1016/j.rser.2017.10.014
  5. Duffie, J., & Beckman, W. (2013). Solar engineering of thermal processes.
  6. Durković, V., & Đurišić, Ž. (2017). Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro. Energies, 10(10), 1505. https://doi.org/10.3390/en10101505
  7. Eldin, S. A. S., Abd-Elhady, M. S., & Kandil, H. A. (2016). Feasibility of solar tracking systems for PV panels in hot and cold regions. Renewable Energy, 85, 228–233. https://doi.org/10.1016/j.renene.2015.06.051
  8. Eslami, S., Gholami, A., Akhbari, H., Zandi, M., & Noorollahi, Y. (2022). Solar-based multi-generation hybrid energy system; simulation and experimental study. International Journal of Ambient Energy, 43(1), 2963–2975. https://doi.org/10.1080/01430750.2020.1785937
  9. Eslami, S., Gholami, A., Bakhtiari, A., Zandi, M., & Noorollahi, Y. (2019). Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future. Energy Conversion and Management, 200(May), 112107. https://doi.org/10.1016/j.enconman.2019.112107
  10. Esmaeili Shayan, M., & Hojati, J. (2021). Floating Solar Power Plants: A Way to Improve Environmental and Operational Flexibility. Iranian Journal of Energy and Environment, 12(4), 337–348. https://doi.org/10.5829/IJEE.2021.12.04.07
  11. Essak, L., & Ghosh, A. (2022). Floating Photovoltaics: A Review. Clean Technologies, 4(3), 752–769. https://doi.org/10.3390/cleantechnol4030046
  12. Fadai, D. (2007). Utilization of renewable energy sources for power generation in Iran. Renewable and Sustainable Energy Reviews, 11(1), 173–181. https://doi.org/10.1016/j.rser.2005.01.011
  13. Faiman, D. (2008). Assessing the outdoor operating temperature of photovoltaic modules. Progress in Photovoltaics: Research and Applications, 16(4), 307–315. https://doi.org/10.1002/pip.813
  14. Fereshtehpour, M., Javidi Sabbaghian, R., Farrokhi, A., Jovein, E. B., & Ebrahimi Sarindizaj, E. (2021). Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures. Renewable Energy, 171, 1171–1187. https://doi.org/10.1016/j.renene.2020.12.005
  15. George, G., & Patel, P. (2019). Floating PV systems–an overview design considerations. PV Tech. Power, 18, 3–6.
  16. Ghaleb, B., Abbasi, S. A., & Asif, M. (2023). Application of solar PV in the building sector: Prospects and barriers in the GCC region. Energy Reports, 9, 3932–3942. https://doi.org/10.1016/j.egyr.2023.02.085
  17. Gholami, A., Alemrajabi, A. A., & Saboonchi, A. (2017). Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications. Solar Energy, 157, 559–565. https://doi.org/10.1016/j.solener.2017.08.075
  18. Gholami, A., Ameri, M., Zandi, M., & Gavagsaz Ghoachani, R. (2021). A single-diode model for photovoltaic panels in variable environmental conditions: Investigating dust impacts with experimental evaluation. Sustainable Energy Technologies and Assessments, 47(October), 101392. https://doi.org/10.1016/j.seta.2021.101392
  19. Gholami, A., Ameri, M., Zandi, M., & Gavagsaz Ghoachani, R. (2022). Electrical, thermal and optical modeling of photovoltaic systems: Step-by-step guide and comparative review study. Sustainable Energy Technologies and Assessments, 49, 101711. https://doi.org/10.1016/j.seta.2021.101711
  20. Gholami, A., Ameri, M., Zandi, M., Ghoachani, R. G., Eslami, S., & Pierfederici, S. (2020). Photovoltaic Potential Assessment and Dust Impacts on Photovoltaic Systems in Iran: Review Paper. IEEE Journal of Photovoltaics, 10(3), 824–837. https://doi.org/10.1109/JPHOTOV.2020.2978851
  21. Gholami, A., Ameri, M., Zandi, M., Ghoachani, R. G., Pierfederici, S., & Kazem, H. A. (2022). Step-By-Step Guide to Model Photovoltaic Panels: An Up-To-Date Comparative Review Study. IEEE Journal of Photovoltaics, 12(4), 915–928. https://doi.org/10.1109/JPHOTOV.2022.3169525
  22. Gholami, A., Eslami, S., Aryan, T., Ameri, M., Gavagsaz-Ghoachani, R., & Zandi, M. (2019). A Review of the Effect of Dust on the Performance of Photovoltaic Panels. Iranian Electric Industry Journal of Quality and Productivity, 8(15), 93–102. http://ieijqp.ir/article-1-587-fa.html
  23. Gholami, A., Eslami, S. H., Tajik, A., Ameri, M., Gavagsaz Ghoachani, R., & Zandi, M. (2019). A review of dust removal methods from the surface of photovoltaic panels. Mechanical Engineering, Sharif Journal, 35(2), 117–127. https://doi.org/10.24200/j40.2019.52496.1496
  24. Gholami, A., Saboonchi, A., & Alemrajabi, A. A. (2017). Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications. Renewable Energy, 112, 466–473. https://doi.org/10.1016/j.renene.2017.05.050
  25. Gholami, A., Tajik, A., Eslami, S., & Zandi, M. (2019). Feasibility Study of Renewable Energy Generation Opportunities for a Dairy Farm. Journal of Renewable Energy and Environment, 6(2), 8–14. https://doi.org/10.30501/jree.2019.95943
  26. Gholami, Y., Gholami, A., Ameri, M., & Zandi, M. (2018). Investigation of Applied Methods of Using Passive Energy In Iranian Traditional Urban Design, Case Study of Kashan. 4th International Conference on Advances In Mechanical Engineering: ICAME 2018, 3–12.
  27. Gómez-Amo, J. L., Freile-Aranda, M. D., Camarasa, J., Estellés, V., Utrillas, M. P., & Martínez-Lozano, J. A. (2019). Empirical estimates of the radiative impact of an unusually extreme dust and wildfire episode on the performance of a photovoltaic plant in Western Mediterranean. Applied Energy, 235, 1226–1234. https://doi.org/10.1016/j.apenergy.2018.11.052
  28. Goswami, A., Sadhu, P., Goswami, U., & Sadhu, P. K. (2019). Floating solar power plant for sustainable development: A techno‐economic analysis. Environmental Progress & Sustainable Energy, 38(6), e13268. https://doi.org/10.1002/ep.13268
  29. Goswami, A., & Sadhu, P. K. (2021). Degradation analysis and the impacts on feasibility study of floating solar photovoltaic systems. Sustainable Energy, Grids and Networks, 26, 100425. https://doi.org/10.1016/j.segan.2020.100425
  30. Guedri, K., Salem, M., Assad, M. E. H., Rungamornrat, J., Malek Mohsen, F., & Buswig, Y. M. (2022). PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis. Sustainability, 14(19), 12298. https://doi.org/10.3390/su141912298
  31. Hayibo, K. S. (2021). QUANTIFYING THE VALUE OF FOAM-BASED FLEXIBLE FLOATING SOLAR PHOTOVOLTAIC SYSTEMS [Michigan Technological University]. In Dissertations, Master’s Theses and Master’s Reports. https://doi.org/10.37099/mtu.dc.etdr/1176
  32. Huang, W., Zhou, K., Sun, K., & He, Z. (2019). Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block. Applied Energy, 253(June), 113523. https://doi.org/10.1016/j.apenergy.2019.113523
  33. K, S. (2019). SWOT analysis of floating solar plants. MOJ Solar and Photoenergy Systems, 3(1), 20–22. https://doi.org/10.15406/mojsp.2019.03.00030
  34. Kazem, H. A., Al-Waeli, A. H. A., Chaichan, M. T., Sopian, K., Gholami, A., & Alnaser, W. E. (2023). Dust and cleaning impact on the performance of photovoltaic: an outdoor experimental study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(1), 3107–3124. https://doi.org/10.1080/15567036.2023.2191064
  35. Kefif, N., Melzi, B., Hashemian, M., Assad, M. E. H., & Hoseinzadeh, S. (2022). Feasibility and optimal operation of micro energy hybrid system (hydro/wind) in the rural valley region. International Journal of Low-Carbon Technologies, 17, 58–68. https://doi.org/10.1093/ijlct/ctab081
  36. Khalifeh Soltani, S. R., Mostafaeipour, A., Almutairi, K., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., & Techato, K. (2022). Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study. Sustainable Energy Technologies and Assessments, 50, 101849. https://doi.org/10.1016/j.seta.2021.101849
  37. Kjeldstad, T., Lindholm, D., Marstein, E., & Selj, J. (2021). Cooling of floating photovoltaics and the importance of water temperature. Solar Energy, 218, 544–551. https://doi.org/10.1016/j.solener.2021.03.022
  38. Kratochvil, J., Boyson, W., & King, D. (2004). Photovoltaic array performance model. In Sandia Report No. 2004-3535 (Vol. 8). https://doi.org/10.2172/919131
  39. Majid, Z. A. A., Ruslan, M. H., Sopian, K., Othman, M. Y., & Azmi, M. S. M. (2014). Study on Performance of 80 Watt Floating Photovoltaic Panel. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 7(1), 1150–1156. https://doi.org/10.15282/jmes.7.2014.14.0112
  40. Majumder, A., Innamorati, R., Frattolillo, A., Kumar, A., & Gatto, G. (2021). Performance Analysis of a Floating Photovoltaic System and Estimation of the Evaporation Losses Reduction. Energies, 14(24), 8336. https://doi.org/10.3390/en14248336
  41. Makkiabadi, M., Hoseinzadeh, S., Mohammadi, M., Nowdeh, S. A., Bayati, S., Jafaraghaei, U., Mirkiai, S. M., & Assad, M. E. H. (2020). Energy Feasibility of Hybrid PV/Wind Systems with Electricity Generation Assessment under Iran Environment. Applied Solar Energy, 56(6), 517–525. https://doi.org/10.3103/S0003701X20060079
  42. Mamatha, G., & Kulkarni, P. S. S. (2022). Assessment of floating solar photovoltaic potential in India’s existing hydropower reservoirs. Energy for Sustainable Development, 69, 64–76. https://doi.org/10.1016/j.esd.2022.05.011
  43. Mayville, P., Patil, N. V., & Pearce, J. M. (2020). Distributed manufacturing of after market flexible floating photovoltaic modules. Sustainable Energy Technologies and Assessments, 42, 100830. https://doi.org/10.1016/j.seta.2020.100830
  44. Melvin, G. K. X. (2015). Experimental study of the effect of floating solar panels on reducing evaporation in Singapore reservoirs. National University of Singapore.
  45. Micheli, L. (2021). Energy and economic assessment of floating photovoltaics in Spanish reservoirs: cost competitiveness and the role of temperature. Solar Energy, 227, 625–634. https://doi.org/10.1016/j.solener.2021.08.058
  46. Minoofar, A., Gholami, A., Eslami, S., Hajizadeh, A., Gholami, A., Zandi, M., Ameri, M., & Kazem, H. A. (2023). Renewable energy system opportunities: A sustainable solution toward cleaner production and reducing carbon footprint of large-scale dairy farms. Energy Conversion and Management, 293, 117554. https://doi.org/10.1016/j.enconman.2023.117554
  47. Padilha Campos Lopes, M., de Andrade Neto, S., Alves Castelo Branco, D., Vasconcelos de Freitas, M. A., & da Silva Fidelis, N. (2020). Water-energy nexus: Floating photovoltaic systems promoting water security and energy generation in the semiarid region of Brazil. Journal of Cleaner Production, 273, 122010. https://doi.org/10.1016/j.jclepro.2020.122010
  48. Pasandideh, A., Nezakati Rezapour, F., Gholami, M., & Gholami, A. (2022). Analysis of the Discourse of Renewable Electricity Generation in Iran. Global Media Journal-Persian Edition, 16(1), 101–122. https://doi.org/10.22059/gmj.2022.344488.1262
  49. Photovoltaic power on Mars. (2003). Photovoltaics Bulletin, 2003(7), 9–10. https://doi.org/10.1016/S1473-8325(03)00719-3
  50. Pimentel Da Silva, G. D., & Branco, D. A. C. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36(5), 390–400. https://doi.org/10.1080/14615517.2018.1477498
  51. Rahbar, K., Eslami, S., Pouladian-Kari, R., & Kirchner, L. (2022). 3-D numerical simulation and experimental study of PV module self-cleaning based on dew formation and single axis tracking. Applied Energy, 316(March), 119119. https://doi.org/10.1016/j.apenergy.2022.119119
  52. Rauf, H., Gull, M. S., & Arshad, N. (2019). Integrating Floating Solar PV with Hydroelectric Power Plant: Analysis of Ghazi Barotha Reservoir in Pakistan. Energy Procedia, 158, 816–821. https://doi.org/10.1016/j.egypro.2019.01.214
  53. Redón Santafé, M., Torregrosa Soler, J. B., Sánchez Romero, F. J., Ferrer Gisbert, P. S., Ferrán Gozálvez, J. J., & Ferrer Gisbert, C. M. (2014). Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs. Energy, 67, 246–255. https://doi.org/10.1016/j.energy.2014.01.083
  54. Rezvani, M., Gholami, A., Gavagsaz-Ghoachani, R., Phattanasak, M., & Zandi, M. (2022). A review of the factors affecting the utilization of solar photovoltaic panels. 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), 62–69. https://doi.org/10.1109/RI2C56397.2022.9910278
  55. Rezvani, M., Gholami, A., Gavagsaz-Ghoachani, R., & Zandi, M. (2023). A Review on The Effect of Dust Properties on Photovoltaic Solar Panels’ Performance. Journal of Renewable and New Energy, 10(1), 198–211. https://doi.org/10.52547/jrenew.10.1.198
  56. Rosa-Clot, M., Rosa-Clot, P., Tina, G. M., & Scandura, P. F. (2010). Submerged photovoltaic solar panel: SP2. Renewable Energy, 35(8), 1862–1865. https://doi.org/10.1016/j.renene.2009.10.023
  57. Sadeghi, D., Golshanfard, A., Eslami, S., Rahbar, K., & Kari, R. (2023). Improving PV power plant forecast accuracy: A hybrid deep learning approach compared across short, medium, and long-term horizons. Renewable Energy Focus, 45, 242–258. https://doi.org/10.1016/j.ref.2023.04.010
  58. Santiago, I., Trillo-Montero, D., Moreno-Garcia, I. M., Pallarés-López, V., & Luna-Rodríguez, J. J. (2018). Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain. Renewable and Sustainable Energy Reviews, 90, 70–89. https://doi.org/10.1016/j.rser.2018.03.054
  59. Semeskandeh, S., Hojjat, M., & Hosseini Abardeh, M. (2022). Techno–economic–environmental comparison of floating photovoltaic plant with conventional solar photovoltaic plant in northern Iran. Clean Energy, 6(2), 353–361. https://doi.org/10.1093/ce/zkac019
  60. Song, J., & Choi, Y. (2016). Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea. Energies, 9(2), 102. https://doi.org/10.3390/en9020102
  61. Stachiw, J. D. (1980). Performance of Photovoltaic Cells in Undersea Environment. Journal of Engineering for Industry, 102(1), 51–59. https://doi.org/10.1115/1.3183829
  62. Trapani, K., & Millar, D. L. (2014). The thin film flexible floating PV (T3F-PV) array: The concept and development of the prototype. Renewable Energy, 71, 43–50. https://doi.org/10.1016/j.renene.2014.05.007
  63. Yadav, N., Gupta, M., & Sudhakar, K. (2016). Energy assessment of floating photovoltaic system. 2016 International Conference on Electrical Power and Energy Systems (ICEPES), 264–269. https://doi.org/10.1109/ICEPES.2016.7915941
  64. Zahedi, R., Ranjbaran, P., Gharehpetian, G. B., Mohammadi, F., & Ahmadiahangar, R. (2021). Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives. Energies, 14(7), 2018. https://doi.org/10.3390/en14072018