Abid, M., Abid, Z., Sagin, J., Murtaza, R., Sarbassov, D., & Shabbir, M. (2019). Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries.
International Journal of Environmental Science and Technology,
16(3), 1755–1762.
https://doi.org/10.1007/s13762-018-2080-5
Agrawal, K. K., Jha, S. K., Mittal, R. K., & Vashishtha, S. (2022). Assessment of floating solar PV (FSPV) potential and water conservation: Case study on Rajghat Dam in Uttar Pradesh, India.
Energy for Sustainable Development,
66, 287–295.
https://doi.org/10.1016/j.esd.2021.12.007
Akrami, E., Gholami, A., Ameri, M., & Zandi, M. (2018). Integrated an innovative energy system assessment by assisting solar energy for day and night time power generation: Exergetic and Exergo-economic investigation.
Energy Conversion and Management,
175, 21–32.
https://doi.org/10.1016/j.enconman.2018.08.075
Akrami, E., Khazaee, I., & Gholami, A. (2018). Comprehensive analysis of a multi-generation energy system by using an energy-exergy methodology for hot water, cooling, power and hydrogen production.
Applied Thermal Engineering,
129, 995–1001.
https://doi.org/10.1016/j.applthermaleng.2017.10.095
Al-Shabi, M., Ghenai, C., Bettayeb, M., Faraz Ahmad, F., & El Haj Assad, M. (2021). Estimating PV models using multi-group salp swarm algorithm.
IAES International Journal of Artificial Intelligence (IJ-AI),
10(2), 398.
https://doi.org/10.11591/ijai.v10.i2.pp398-406
Aldawoud, A., Aldawoud, A., Aryanfar, Y., Assad, M. E. H., Sharma, S., & Alayi, R. (2022). Reducing PV soiling and condensation using hydrophobic coating with brush and controllable curtains.
International Journal of Low-Carbon Technologies.
https://doi.org/10.1093/ijlct/ctac056
AlMallahi, M., Nooman, El Haj Assad, M., AlShihabi, S., & Alayi, R. (2022). Multi-criteria decision-making approach for the selection of cleaning method of solar PV panels in United Arab Emirates based on sustainability perspective.
International Journal of Low-Carbon Technologies,
17, 380–393.
https://doi.org/10.1093/ijlct/ctac010
Ameri, M., Minoofar, A., Gholami, A., Gholami, A., Eslami, S., & Zandi, M. (2023). Energy Efficiency and Solar Energy Implementation Opportunities for Dairy Farms. 11th Global Conference on Global Warming (GCGW-2023), 1–4.
Aryanfar, A., Gholami, A., Pourgholi, M., Shahroozi, S., Zandi, M., & Khosravi, A. (2020). Multi-criteria photovoltaic potential assessment using fuzzy logic in decision-making: A case study of Iran.
Sustainable Energy Technologies and Assessments,
42(April), 100877.
https://doi.org/10.1016/j.seta.2020.100877
Aryanfar, A., Gholami, A., Pourgholi, M., & Zandi, M. (2021). Multicriteria wind potential assessment using fuzzy logic in decision making: A case study of Iran.
Wind Energy,
February, we.2640.
https://doi.org/10.1002/we.2640
Ascencio-Vásquez, J., Kaaya, I., Brecl, K., Weiss, K.-A., & Topič, M. (2019). Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules.
Energies,
12(24), 4749.
https://doi.org/10.3390/en12244749
Azami, S., Vahdaty, M., & Torabi, F. (2017). Energy Equipment and Systems Theoretical analysis of reservoir-based floating photovoltaic plant for 15-khordad dam in Delijan.
Energy Equipment and Systems,
5(2), 211–218.
https://doi.org/10.22059/ees.2017.25760
Azmi, M. S. M., Othman, M. Y. H., Ruslan, M. H. H., Sopian, K., & Majid, Z. A. A. (2013). Study on electrical power output of floating photovoltaic and conventional photovoltaic.
AIP Conference Proceedings,
1571(1), 95–101.
https://doi.org/10.1063/1.4858636
Cai, S., Bao, G., Ma, X., Wu, W., Bian, G.-B., Rodrigues, J. J. P. C., & de Albuquerque, V. H. C. (2019). Parameters optimization of the dust absorbing structure for photovoltaic panel cleaning robot based on orthogonal experiment method.
Journal of Cleaner Production,
217, 724–731.
https://doi.org/10.1016/j.jclepro.2019.01.135
Campana, P. E., Wästhage, L., Nookuea, W., Tan, Y., & Yan, J. (2019). Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems.
Solar Energy,
177, 782–795.
https://doi.org/10.1016/j.solener.2018.11.045
Cazzaniga, R., Cicu, M., Rosa-Clot, M., Rosa-Clot, P., Tina, G. M., & Ventura, C. (2018). Floating photovoltaic plants: Performance analysis and design solutions.
Renewable and Sustainable Energy Reviews,
81, 1730–1741.
https://doi.org/10.1016/j.rser.2017.05.269
Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., & Pietzcker, R. C. (2017). The underestimated potential of solar energy to mitigate climate change.
Nature Energy,
2(9), 17140.
https://doi.org/10.1038/nenergy.2017.140
Deb, D., & Brahmbhatt, N. L. (2018). Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution.
Renewable and Sustainable Energy Reviews,
82(October), 3306–3313.
https://doi.org/10.1016/j.rser.2017.10.014
Duffie, J., & Beckman, W. (2013). Solar engineering of thermal processes.
Durković, V., & Đurišić, Ž. (2017). Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro.
Energies,
10(10), 1505.
https://doi.org/10.3390/en10101505
Eslami, S., Gholami, A., Akhbari, H., Zandi, M., & Noorollahi, Y. (2022). Solar-based multi-generation hybrid energy system; simulation and experimental study.
International Journal of Ambient Energy,
43(1), 2963–2975.
https://doi.org/10.1080/01430750.2020.1785937
Eslami, S., Gholami, A., Bakhtiari, A., Zandi, M., & Noorollahi, Y. (2019). Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future.
Energy Conversion and Management,
200(May), 112107.
https://doi.org/10.1016/j.enconman.2019.112107
Esmaeili Shayan, M., & Hojati, J. (2021). Floating Solar Power Plants: A Way to Improve Environmental and Operational Flexibility.
Iranian Journal of Energy and Environment,
12(4), 337–348.
https://doi.org/10.5829/IJEE.2021.12.04.07
Faiman, D. (2008). Assessing the outdoor operating temperature of photovoltaic modules.
Progress in Photovoltaics: Research and Applications,
16(4), 307–315.
https://doi.org/10.1002/pip.813
Fereshtehpour, M., Javidi Sabbaghian, R., Farrokhi, A., Jovein, E. B., & Ebrahimi Sarindizaj, E. (2021). Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures.
Renewable Energy,
171, 1171–1187.
https://doi.org/10.1016/j.renene.2020.12.005
George, G., & Patel, P. (2019). Floating PV systems–an overview design considerations. PV Tech. Power, 18, 3–6.
Gholami, A., Alemrajabi, A. A., & Saboonchi, A. (2017). Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications.
Solar Energy,
157, 559–565.
https://doi.org/10.1016/j.solener.2017.08.075
Gholami, A., Ameri, M., Zandi, M., & Gavagsaz Ghoachani, R. (2021). A single-diode model for photovoltaic panels in variable environmental conditions: Investigating dust impacts with experimental evaluation.
Sustainable Energy Technologies and Assessments,
47(October), 101392.
https://doi.org/10.1016/j.seta.2021.101392
Gholami, A., Ameri, M., Zandi, M., & Gavagsaz Ghoachani, R. (2022). Electrical, thermal and optical modeling of photovoltaic systems: Step-by-step guide and comparative review study.
Sustainable Energy Technologies and Assessments,
49, 101711.
https://doi.org/10.1016/j.seta.2021.101711
Gholami, A., Ameri, M., Zandi, M., Ghoachani, R. G., Eslami, S., & Pierfederici, S. (2020). Photovoltaic Potential Assessment and Dust Impacts on Photovoltaic Systems in Iran: Review Paper.
IEEE Journal of Photovoltaics,
10(3), 824–837.
https://doi.org/10.1109/JPHOTOV.2020.2978851
Gholami, A., Ameri, M., Zandi, M., Ghoachani, R. G., Pierfederici, S., & Kazem, H. A. (2022). Step-By-Step Guide to Model Photovoltaic Panels: An Up-To-Date Comparative Review Study.
IEEE Journal of Photovoltaics,
12(4), 915–928.
https://doi.org/10.1109/JPHOTOV.2022.3169525
Gholami, A., Eslami, S., Aryan, T., Ameri, M., Gavagsaz-Ghoachani, R., & Zandi, M. (2019). A Review of the Effect of Dust on the Performance of Photovoltaic Panels.
Iranian Electric Industry Journal of Quality and Productivity,
8(15), 93–102.
http://ieijqp.ir/article-1-587-fa.html
Gholami, A., Eslami, S. H., Tajik, A., Ameri, M., Gavagsaz Ghoachani, R., & Zandi, M. (2019). A review of dust removal methods from the surface of photovoltaic panels.
Mechanical Engineering, Sharif Journal,
35(2), 117–127.
https://doi.org/10.24200/j40.2019.52496.1496
Gholami, A., Saboonchi, A., & Alemrajabi, A. A. (2017). Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications.
Renewable Energy,
112, 466–473.
https://doi.org/10.1016/j.renene.2017.05.050
Gholami, A., Tajik, A., Eslami, S., & Zandi, M. (2019). Feasibility Study of Renewable Energy Generation Opportunities for a Dairy Farm.
Journal of Renewable Energy and Environment,
6(2), 8–14.
https://doi.org/10.30501/jree.2019.95943
Gholami, Y., Gholami, A., Ameri, M., & Zandi, M. (2018). Investigation of Applied Methods of Using Passive Energy In Iranian Traditional Urban Design, Case Study of Kashan. 4th International Conference on Advances In Mechanical Engineering: ICAME 2018, 3–12.
Gómez-Amo, J. L., Freile-Aranda, M. D., Camarasa, J., Estellés, V., Utrillas, M. P., & Martínez-Lozano, J. A. (2019). Empirical estimates of the radiative impact of an unusually extreme dust and wildfire episode on the performance of a photovoltaic plant in Western Mediterranean.
Applied Energy,
235, 1226–1234.
https://doi.org/10.1016/j.apenergy.2018.11.052
Goswami, A., Sadhu, P., Goswami, U., & Sadhu, P. K. (2019). Floating solar power plant for sustainable development: A techno‐economic analysis.
Environmental Progress & Sustainable Energy,
38(6), e13268.
https://doi.org/10.1002/ep.13268
Goswami, A., & Sadhu, P. K. (2021). Degradation analysis and the impacts on feasibility study of floating solar photovoltaic systems.
Sustainable Energy, Grids and Networks,
26, 100425.
https://doi.org/10.1016/j.segan.2020.100425
Guedri, K., Salem, M., Assad, M. E. H., Rungamornrat, J., Malek Mohsen, F., & Buswig, Y. M. (2022). PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis.
Sustainability,
14(19), 12298.
https://doi.org/10.3390/su141912298
Hayibo, K. S. (2021). QUANTIFYING THE VALUE OF FOAM-BASED FLEXIBLE FLOATING SOLAR PHOTOVOLTAIC SYSTEMS [Michigan Technological University]. In
Dissertations, Master’s Theses and Master’s Reports.
https://doi.org/10.37099/mtu.dc.etdr/1176
Huang, W., Zhou, K., Sun, K., & He, Z. (2019). Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block.
Applied Energy,
253(June), 113523.
https://doi.org/10.1016/j.apenergy.2019.113523
Kazem, H. A., Al-Waeli, A. H. A., Chaichan, M. T., Sopian, K., Gholami, A., & Alnaser, W. E. (2023). Dust and cleaning impact on the performance of photovoltaic: an outdoor experimental study.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,
45(1), 3107–3124.
https://doi.org/10.1080/15567036.2023.2191064
Kefif, N., Melzi, B., Hashemian, M., Assad, M. E. H., & Hoseinzadeh, S. (2022). Feasibility and optimal operation of micro energy hybrid system (hydro/wind) in the rural valley region.
International Journal of Low-Carbon Technologies,
17, 58–68.
https://doi.org/10.1093/ijlct/ctab081
Khalifeh Soltani, S. R., Mostafaeipour, A., Almutairi, K., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., & Techato, K. (2022). Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study.
Sustainable Energy Technologies and Assessments,
50, 101849.
https://doi.org/10.1016/j.seta.2021.101849
Kratochvil, J., Boyson, W., & King, D. (2004). Photovoltaic array performance model. In
Sandia Report No. 2004-3535 (Vol. 8).
https://doi.org/10.2172/919131
Majid, Z. A. A., Ruslan, M. H., Sopian, K., Othman, M. Y., & Azmi, M. S. M. (2014). Study on Performance of 80 Watt Floating Photovoltaic Panel.
JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES,
7(1), 1150–1156.
https://doi.org/10.15282/jmes.7.2014.14.0112
Majumder, A., Innamorati, R., Frattolillo, A., Kumar, A., & Gatto, G. (2021). Performance Analysis of a Floating Photovoltaic System and Estimation of the Evaporation Losses Reduction.
Energies,
14(24), 8336.
https://doi.org/10.3390/en14248336
Makkiabadi, M., Hoseinzadeh, S., Mohammadi, M., Nowdeh, S. A., Bayati, S., Jafaraghaei, U., Mirkiai, S. M., & Assad, M. E. H. (2020). Energy Feasibility of Hybrid PV/Wind Systems with Electricity Generation Assessment under Iran Environment.
Applied Solar Energy,
56(6), 517–525.
https://doi.org/10.3103/S0003701X20060079
Mamatha, G., & Kulkarni, P. S. S. (2022). Assessment of floating solar photovoltaic potential in India’s existing hydropower reservoirs.
Energy for Sustainable Development,
69, 64–76.
https://doi.org/10.1016/j.esd.2022.05.011
Mayville, P., Patil, N. V., & Pearce, J. M. (2020). Distributed manufacturing of after market flexible floating photovoltaic modules.
Sustainable Energy Technologies and Assessments,
42, 100830.
https://doi.org/10.1016/j.seta.2020.100830
Melvin, G. K. X. (2015). Experimental study of the effect of floating solar panels on reducing evaporation in Singapore reservoirs. National University of Singapore.
Minoofar, A., Gholami, A., Eslami, S., Hajizadeh, A., Gholami, A., Zandi, M., Ameri, M., & Kazem, H. A. (2023). Renewable energy system opportunities: A sustainable solution toward cleaner production and reducing carbon footprint of large-scale dairy farms.
Energy Conversion and Management,
293, 117554.
https://doi.org/10.1016/j.enconman.2023.117554
Padilha Campos Lopes, M., de Andrade Neto, S., Alves Castelo Branco, D., Vasconcelos de Freitas, M. A., & da Silva Fidelis, N. (2020). Water-energy nexus: Floating photovoltaic systems promoting water security and energy generation in the semiarid region of Brazil.
Journal of Cleaner Production,
273, 122010.
https://doi.org/10.1016/j.jclepro.2020.122010
Pasandideh, A., Nezakati Rezapour, F., Gholami, M., & Gholami, A. (2022). Analysis of the Discourse of Renewable Electricity Generation in Iran.
Global Media Journal-Persian Edition,
16(1), 101–122.
https://doi.org/10.22059/gmj.2022.344488.1262
Pimentel Da Silva, G. D., & Branco, D. A. C. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts.
Impact Assessment and Project Appraisal,
36(5), 390–400.
https://doi.org/10.1080/14615517.2018.1477498
Rahbar, K., Eslami, S., Pouladian-Kari, R., & Kirchner, L. (2022). 3-D numerical simulation and experimental study of PV module self-cleaning based on dew formation and single axis tracking.
Applied Energy,
316(March), 119119.
https://doi.org/10.1016/j.apenergy.2022.119119
Rauf, H., Gull, M. S., & Arshad, N. (2019). Integrating Floating Solar PV with Hydroelectric Power Plant: Analysis of Ghazi Barotha Reservoir in Pakistan.
Energy Procedia,
158, 816–821.
https://doi.org/10.1016/j.egypro.2019.01.214
Redón Santafé, M., Torregrosa Soler, J. B., Sánchez Romero, F. J., Ferrer Gisbert, P. S., Ferrán Gozálvez, J. J., & Ferrer Gisbert, C. M. (2014). Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs.
Energy,
67, 246–255.
https://doi.org/10.1016/j.energy.2014.01.083
Rezvani, M., Gholami, A., Gavagsaz-Ghoachani, R., Phattanasak, M., & Zandi, M. (2022). A review of the factors affecting the utilization of solar photovoltaic panels.
2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), 62–69.
https://doi.org/10.1109/RI2C56397.2022.9910278
Rezvani, M., Gholami, A., Gavagsaz-Ghoachani, R., & Zandi, M. (2023). A Review on The Effect of Dust Properties on Photovoltaic Solar Panels’ Performance.
Journal of Renewable and New Energy,
10(1), 198–211.
https://doi.org/10.52547/jrenew.10.1.198
Sadeghi, D., Golshanfard, A., Eslami, S., Rahbar, K., & Kari, R. (2023). Improving PV power plant forecast accuracy: A hybrid deep learning approach compared across short, medium, and long-term horizons.
Renewable Energy Focus,
45, 242–258.
https://doi.org/10.1016/j.ref.2023.04.010
Santiago, I., Trillo-Montero, D., Moreno-Garcia, I. M., Pallarés-López, V., & Luna-Rodríguez, J. J. (2018). Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain.
Renewable and Sustainable Energy Reviews,
90, 70–89.
https://doi.org/10.1016/j.rser.2018.03.054
Semeskandeh, S., Hojjat, M., & Hosseini Abardeh, M. (2022). Techno–economic–environmental comparison of floating photovoltaic plant with conventional solar photovoltaic plant in northern Iran.
Clean Energy,
6(2), 353–361.
https://doi.org/10.1093/ce/zkac019
Song, J., & Choi, Y. (2016). Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea.
Energies,
9(2), 102.
https://doi.org/10.3390/en9020102
Stachiw, J. D. (1980). Performance of Photovoltaic Cells in Undersea Environment.
Journal of Engineering for Industry,
102(1), 51–59.
https://doi.org/10.1115/1.3183829
Yadav, N., Gupta, M., & Sudhakar, K. (2016). Energy assessment of floating photovoltaic system.
2016 International Conference on Electrical Power and Energy Systems (ICEPES), 264–269.
https://doi.org/10.1109/ICEPES.2016.7915941
Zahedi, R., Ranjbaran, P., Gharehpetian, G. B., Mohammadi, F., & Ahmadiahangar, R. (2021). Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives.
Energies,
14(7), 2018.
https://doi.org/10.3390/en14072018