Document Type : Review Article

Authors

1 Department of Electrical Engineering, Jubail Industrial College, P. O. Box: 31961, AL Jubail, Kingdom of Saudi Arabia.

2 Gina Cody Scholl of Engineering and Computer Science, Concordia Institute for Information Systems Engineering, Concordia University P. O. Box H3G 1M8, Montreal, Canada.

3 Shoolini university, Solan

4 Photovoltaic Research Group, Centre of Excellence in Energy Science and Technology, Shoolini University, P. O. Box:173212, Himachal Pradesh, India

10.30501/jree.2024.408699.1638

Abstract

A major design challenge for a grid-integrated photovoltaic power plant is to generate maximum power under varying loads, irradiance, and outdoor climatic conditions using competitive algorithm-based controllers. The objective of this study is to review experimentally validated advanced maximum power point tracking algorithms for enhancing power generation. A comprehensive analysis of 14 of the most advanced metaheuristics and 17 hybrid homogeneous and heterogeneous metaheuristic techniques is carried out, along with a comparison of algorithm complexity, maximum power point tracking capability, tracking frequency, accuracy, and maximum power extracted from PV systems. The results show that maximum power point tracking controllers mostly use conventional algorithms; however, metaheuristic algorithms and their hybrid variants are found to be superior to conventional techniques under varying environmental conditions. The Grey Wolf Optimization, in combination with Perturb & Observe, and Jaya-Differential Evolution, is found to be the most competitive technique. The study shows that standard testing and evaluation procedures can be further developed for comparing metaheuristic algorithms and their hybrid variants for developing advanced maximum power point tracking controllers. The identified algorithms are found to enhance power generation by grid-integrated commercial solar power plants. The results are of importance to the solar industry and researchers worldwide.

Keywords

Main Subjects

  1.  
  2. Abdulaziz, S., Attlam, G., Zaki, G., & Nabil, E. (2022). Cuckoo search algorithm and particle swarm optimization based maximum power point tracking techniques. Indonesian Journal of Electrical Engineering and Computer Science, 26(2), 605–616. Retrieved 20 December 2023 from https://doi.org/10.11591/IJEECS.V26.I2.PP605-616
  3. Abu Eldahab, Y. E., Saad, N. H., & Zekry, A. (2014). Enhancing the maximum power point tracking techniques for photovoltaic systems. Renewable and Sustainable Energy Reviews, 40, 505–514. Retrieved from https://doi.org/10.1016/J.RSER.2014.07.202
  4. Aguila-Leon, J., Vargas-Salgado, C., Chiñas-Palacios, C., & Díaz-Bello, D. (2023). Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms. Expert Systems with Applications, 211, 118700. Retrieved 20 December 2023 from https://doi.org/10.1016/J.ESWA.2022.118700
  5. Ahmed, J., & Salam, Z. (2014). A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability. Applied Energy, 119, 118–130. Retrieved from https://doi.org/10.1016/j.apenergy.2013.12.062
  6. Ahmed, N. A., & Miyatake, M. (2008). A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electric Power Systems Research, 78(5), 777–784. Retrieved from https://doi.org/10.1016/J.EPSR.2007.05.026
  7. Ahmed, N. A., Abdul Rahman, S., & Alajmi, B. N. (2021). Optimal controller tuning for P&O maximum power point tracking of PV systems using genetic and cuckoo search algorithms. International Transactions on Electrical Energy Systems, 31(10), 1–21. Retrieved from https://doi.org/10.1002/2050-7038.12624
  8. Ahmed, S., Mekhilef, S., Mubin, M. B., & Tey, K. S. (2022). Performances of the adaptive conventional maximum power point tracking algorithms for solar photovoltaic system. Sustainable Energy Technologies and Assessments, 53, 102390. Retrieved 20 December 2023 from https://doi.org/10.1016/J.SETA.2022.102390
  9. Al Garni, H. Z., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206C, 1225–1240. Retrieved from https://doi.org/10.1016/j.apenergy.2017.10.024
  10. Al Garni, H. Z., Awasthi, A., & Ramli, M. A. M. (2018). Optimal design and analysis of grid-connected photovoltaic under different tracking systems using HOMER. Energy Conversion and Management, 155C, 42–57.
  11. Al Garni, H. Z., Awasthi, A., & Wright, D. (2019). Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia. Renewable Energy, 133, 538–550. Retrieved from https://doi.org/10.1016/j.renene.2018.10.048
  12. Ali, A., Almutairi, K., Malik, M. Z., Irshad, K., Tirth, V., Algarni, S., … Shukla, N. K. (2020). Review of online and soft computing maximum power point tracking techniques under non-uniform solar irradiation conditions. Energies, 13(12). Retrieved from https://doi.org/10.3390/en13123256
  13. Amine, H. M., Abdelaziz, H., & Najib, E. (2015). Maximum Power Point Tracking Using IT2FL Tuned with GA. Energy Procedia, 83, 399–407. Retrieved from https://doi.org/10.1016/J.EGYPRO.2015.12.215
  14. Aygül, K., Cikan, M., Demirdelen, T., & Tumay, M. (2023). Butterfly optimization algorithm based maximum power point tracking of photovoltaic systems under partial shading condition. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 8337–8355. Retrieved 20 December 2023 from https://doi.org/10.1080/15567036.2019.1677818
  15. Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753–1766. Retrieved from https://doi.org/10.1016/J.RSER.2010.12.008
  16. Basiński K, Ufnalski B, G. L. M. (2017). Hybrid MPPT algorithm for PV systems under partially shaded conditions using a stochastic evolutionary search and a deterministic hill climbing. Power Electronics and Drives, 2(2), 49–59. Retrieved from https://doi.org/10.5277/PED170212
  17. Başoğlu, M. E. (2022). Comprehensive review on distributed maximum power point tracking: Submodule level and module level MPPT strategies. Solar Energy, 241, 85–108. Retrieved 20 December 2023 from https://doi.org/10.1016/J.SOLENER.2022.05.039
  18. Beheshti, Z., Mariyam, S., & Shamsuddin, H. (2013). A Review of Population-based Meta-Heuristic Algorithm. J. Advance. Soft Comput. Appl (Vol. 5)
  19. Belhachat, F., & Larbes, C. (2018). A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions. Renewable and Sustainable Energy Reviews, 92(January), 513–553. Retrieved from https://doi.org/10.1016/j.rser.2018.04.094
  20. Belhachat, F., & Larbes, C. (2019). Comprehensive review on global maximum power point tracking techniques for PV systems subjected to partial shading conditions. Solar Energy, 183(October 2018), 476–500. Retrieved from https://doi.org/10.1016/j.solener.2019.03.045
  21. Bellala DJ, C. M. (2007). Genetic algorithm technique for optimizing the maximum supplied power of a photovoltaic module under various atmospheric conditions. Journal of Electrical Engineering, 7(4), 309–332
  22. Bendib, B., Belmili, H., & Krim, F. (2015). A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Reviews, 45, 637–648. Retrieved from https://doi.org/10.1016/J.RSER.2015.02.009
  23. Benyoucef, A. soufyane, Chouder, A., Kara, K., Silvestre, S., & sahed, O. A. (2015). Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Applied Soft Computing, 32, 38–48. Retrieved from https://doi.org/10.1016/J.ASOC.2015.03.047
  24. Chandel, R., Chandel, S.S, Prasad, D., Dwivedi R.P (2022), Review on thermoelectric systems for enhancing photovoltaic power generation, Sustainable Energy Technologies and Assessments, https://doi.org/10.1016/j.seta.2022.102585
  25. Chandel, R., Chandel, S.S. (2022) Performance analysis outcome of a 19-MWp commercial solar photovoltaic plant with fixed-tilt, adjustable-tilt, and solar tracking configurations. Prog Photovoltaics Res Appl. 30(1):27–48. https://doi.org/10.1002/PIP.3458
  26. Chandel, S.S, Gupta, A., Chandel R., Tajjour, S. (2023), Review of deep learning techniques for power generation prediction of industrial solar photovoltaic plants, Solar Compass 8, 100061, https://doi.org/10.1016/j.solcom.2023.100061
  27. Chao, K. H. (2015). A high performance PSO-based global MPP tracker for a PV power generation system. Energies, 8(7), 6841–6858. Retrieved from https://doi.org/10.3390/en8076841
  28. Chao, R.-M., Nasirudin, A., Wang, I.-K., & Chen, P.-L. (2016). Multicore PSO Operation for Maximum Power Point Tracking of a Distributed Photovoltaic System under Partially Shading Condition. International Journal of Photoenergy, 2016, 1–19. Retrieved from https://doi.org/10.1155/2016/9754514
  29. Chaves, E. N., Reis, J. H., Coelho, E. A. A., Freitas, L. C. G., Júnior, J. B. V, & Freitas, L. C. (2016). Simulated Annealing – MPPT in Partially Shaded PV Systems. Ieee Latin America Transactions, 14(1), 235–241. Retrieved from https://doi.org/10.1109/TLA.2016.7430084
  30. Chitra, A., Yogitha, G., Sivaramakrishnan, K., Razia Sultana, W., & Sanjeevikumar, P. (2020). Modified Firefly‐Based Maximum Power Point Tracking Algorithm for PV Systems Under Partial Shading Conditions. Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles, 143–163. Retrieved from https://doi.org/10.1002/9781119682035.ch8
  31. Chowdhury, S. R., Mukherjee, D., & Saha, H. (2009). FPGA based maximum power point tracker of partially shaded solar photovoltaic arrays using modified adaptive perceptive particle swarm optimization. International Journal on Smart Sensing and Intelligent Systems, 2(4), 661–675. Retrieved from https://doi.org/10.21307/ijssis-2017-374
  32. Dahmane, M., Bosche, J., El-Hajjaji, A., & Pierre, X. (2013). MPPT for photovoltaic conversion systems using genetic algorithm and robust control. In 2013 American Control Conference (pp. 6595–6600). IEEE. Retrieved from https://doi.org/10.1109/ACC.2013.6580874
  33. Daraban, S., Petreus, D., & Morel, C. (2014). A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading. Energy, 74(C), 374–388. Retrieved from https://doi.org/10.1016/j.energy.2014.07.001
  34. Dhas, B. G. S., & Deepa, S. N. (2013). A hybrid PSO and GSA-based maximum power point tracking algorithm for PV systems. In 2013 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1–4). IEEE. Retrieved from https://doi.org/10.1109/ICCIC.2013.6724181
  35. Dizqah, A. M., Maheri, A., & Busawon, K. (2014). An accurate method for the PV model identification based on a genetic algorithm and the interior-point method. Renewable Energy, 72, 212–222. Retrieved from https://doi.org/10.1016/J.RENENE.2014.07.014
  36. Dorigo, Marco., & Stützle, Thomas. (2004). Ant colony optimization. MIT Press.
  37. Eberhart, R., & Kennedy, J. (n.d.). A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39–43). IEEE. Retrieved from https://doi.org/10.1109/MHS.1995.494215
  38. El-Arini, M. M. M., Othman, A. M., & Fathy, A. (2013). A New Optimization Approach for Maximizing the Photovoltaic Panel Power Based on Genetic Algorithm and Lagrange Multiplier Algorithm. International Journal of Photoenergy, 2013, 1–12. Retrieved from https://doi.org/10.1155/2013/481468
  39. Eltawil, M. A., & Zhao, Z. (2013). MPPT techniques for photovoltaic applications. Renewable and Sustainable Energy Reviews, 25, 793–813. Retrieved from https://doi.org/10.1016/j.rser.2013.05.022
  40. Emile Aarts, J. K. and W. M. (2014). Simulated Annealing. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Second Edition (pp. 265–284). New York: pringer Science+Business Media. Retrieved from https://doi.org/10.1007/978-1-4614-6940-7
  41. Farh, H. M. H., Eltamaly, A. M., & Othman, M. F. (2018). Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system. PLOS ONE, 13(11), e0206171. Retrieved from https://doi.org/10.1371/journal.pone.0206171
  42. Ferguson, D. E. (1960). Fibonaccian searching. Communications of the ACM, 3(12), 648. Retrieved from https://doi.org/10.1145/367487.367496
  43. Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35. Retrieved from https://doi.org/10.1007/s00366-011-0241-y
  44. Garud, K. S., Jayaraj, S., & Lee, M. Y. (2021). A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. International Journal of Energy Research, 45(1), 6–35. Retrieved from https://doi.org/10.1002/er.5608
  45. Gokilapriya, D., & Barvin Banu, S. (2015). MPPT Measurement of Photovoltaic System Under Partial Shading Condition Using DPSO Algorithm (pp. 1037–1046). Springer, New Delhi. Retrieved from https://doi.org/10.1007/978-81-322-2119-7_101
  46. Gupta, A., Chauhan, Y. K., & Pachauri, R. K. (2016). A comparative investigation of maximum power point tracking methods for solar PV system. Solar Energy, 136, 236–253. Retrieved from https://doi.org/10.1016/J.SOLENER.2016.07.001
  47. Hadjaissa, A., Ait cheikh, S. M., Ameur, K., & Essounbouli, N. (2016). A GA-based optimization of a fuzzy-based MPPT controller for a photovoltaic pumping system, Case study for Laghouat, Algeria. IFAC-PapersOnLine, 49(12), 692–697. Retrieved from https://doi.org/10.1016/J.IFACOL.2016.07.791
  48. Hadji, S., Krim, F., & Gaubert, J. P. (2011). Development of an algorithm of maximum power point tracking for photovoltaic systems using genetic algorithms. In 7th International Workshop on Systems, Signal Processing and their Applications, WoSSPA 2011 (pp. 43–46). IEEE. Retrieved from https://doi.org/10.1109/WOSSPA.2011.5931408
  49. Hanzaei, S. H., Gorji, S. A., & Ektesabi, M. (2020a). A scheme-based review of MPPT techniques with respect to input variables including solar irradiance and PV arrays’ temperature. IEEE Access, 8, 182229–182239. Retrieved from https://doi.org/10.1109/ACCESS.2020.3028580
  50. Hanzaei, S. H., Gorji, S. A., & Ektesabi, M. (2020b). A scheme-based review of MPPT techniques with respect to input variables including solar irradiance and PV arrays’ temperature. IEEE Access, 8, 182229–182239. Retrieved from https://doi.org/10.1109/ACCESS.2020.3028580
  51. Harrag, A., & Messalti, S. (2015). Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renewable and Sustainable Energy Reviews, 49, 1247–1260. Retrieved from https://doi.org/10.1016/J.RSER.2015.05.003
  52. Hayder, W., Ogliari, E., Dolara, A., Abid, A., Hamed, M. Ben, & Sbita, L. (2020). Improved PSO: A comparative study in MPPT algorithm for PV system control under partial shading conditions. Energies, 13(8). Retrieved from https://doi.org/10.3390/en13082035
  53. Hong, Y.-Y., Beltran, A. A., & Paglinawan, A. C. (2016). A Chaos-Enhanced Particle Swarm Optimization with Adaptive Parameters and Its Application in Maximum Power Point Tracking. Mathematical Problems in Engineering, 2016, 1–19. Retrieved from https://doi.org/10.1155/2016/6519678
  54. Houam, Y., Terki, A., & Bouarroudj, N. (2021). An Efficient Metaheuristic Technique to Control the Maximum Power Point of a Partially Shaded Photovoltaic System Using Crow Search Algorithm (CSA). Journal of Electrical Engineering and Technology, 16(1), 381–402. Retrieved from https://doi.org/10.1007/s42835-020-00590-8
  55. Huang, Y.-P., Chen, X., & Ye, C.-E. (2018). Research Article A Hybrid Maximum Power Point Tracking Approach for Photovoltaic Systems under Partial Shading Conditions Using a Modified Genetic Algorithm and the Firefly Algorithm. International Journal of Photoenergy, 2018, 1–13. Retrieved from https://doi.org/10.1155/2018/7598653
  56. Ilyas, A., Ayyub, M., & Khan, M. R. (2020). Modelling and simulation of MPPT techniques for solar photovoltaic system using genetic algorithm optimised fuzzy logic controller. International Journal of Energy Technology and Policy, 16(2), 174–195. Retrieved from https://doi.org/10.1504/IJETP.2020.105507
  57. Ishaque, K., & Salam, Z. (2013). A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. IEEE Transactions on Industrial Electronics, 60(8), 3195–3206. Retrieved from https://doi.org/10.1109/TIE.2012.2200223
  58. Ishaque, K., Salam, Z., Amjad, M., & Mekhilef, S. (2012). An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Transactions on Power Electronics, 27(8), 3627–3638. Retrieved from https://doi.org/10.1109/TPEL.2012.2185713
  59. Ishaque, K., Salam, Z., Shamsudin, A., & Amjad, M. (2012). A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm. Applied Energy, 99, 414–422. Retrieved from https://doi.org/10.1016/j.apenergy.2012.05.026
  60. Jiang, Lian L., Srivatsan, R., & Maskell, D. L. (2018). Computational intelligence techniques for maximum power point tracking in PV systems: A review. Renewable and Sustainable Energy Reviews, 85, 14–45. Retrieved from https://doi.org/10.1016/J.RSER.2018.01.006
  61. Jiang, Lian Lian, Maskell, D. L., & Patra, J. C. (2013). A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy and Buildings, 58, 227–236. Retrieved from https://doi.org/10.1016/J.ENBUILD.2012.12.001
  62. Jordehi, A. R. (2016). Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches. Renewable and Sustainable Energy Reviews, 65, 1127–1138. Retrieved from https://doi.org/10.1016/J.RSER.2016.07.053
  63. KARABOGA, D. (2005). An idea based on honey bee swarm for numerical optimization.
  64. Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108–132. Retrieved from https://doi.org/10.1016/j.amc.2009.03.090
  65. Katche, M. L., Makokha, A. B., Zachary, S. O., & Adaramola, M. S. (2023). A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems. Energies 2023, Vol. 16, Page 2206, 16(5), 2206. Retrieved 20 December 2023 from https://doi.org/10.3390/EN16052206
  66. Kermadi, M., & Berkouk, E. M. (2015). A Hybrid PSO-PI based Maximum Power Point Tracking algorithm using adaptive sampling time strategy. In 2015 4th International Conference on Electrical Engineering (ICEE) (pp. 1–6). IEEE. Retrieved from https://doi.org/10.1109/INTEE.2015.7416787
  67. Khalessi, N., Niroomand, M., Dadkhah, J., & Nikouei, S. Y. (2020). A Firework-Based GMPPT with Variable Sampling Time for PV Systems. Mathematical Problems in Engineering, 2020. Retrieved from https://doi.org/10.1155/2020/6130202
  68. Khan, M. J., Kumar, D., Narayan, Y., Malik, H., Márquez, F. P. G., & Muñoz, C. Q. G. (2022). A Novel Artificial Intelligence Maximum Power Point Tracking Technique for Integrated PV-WT-FC Frameworks. Energies 2022, Vol. 15, Page 3352, 15(9), 3352. Retrieved 20 December 2023 from https://doi.org/10.3390/EN15093352
  69. Khare, A., & Rangnekar, S. (2013). A review of particle swarm optimization and its applications in Solar Photovoltaic system. Applied Soft Computing Journal, 13(5), 2997–3006. Retrieved from https://doi.org/10.1016/j.asoc.2012.11.033
  70. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. Retrieved from https://doi.org/10.1126/science.220.4598.671
  71. Koad, R. B. A., Zobaa, A. F., & El-Shahat, A. (2017). A Novel MPPT Algorithm Based on Particle Swarm Optimization for Photovoltaic Systems. IEEE Transactions on Sustainable Energy, 8(2), 468–476. Retrieved from https://doi.org/10.1109/TSTE.2016.2606421
  72. Koh, J. S., Tan, R. H. G., Lim, W. H., & Tan, N. M. L. (2023). A Modified Particle Swarm Optimization for Efficient Maximum Power Point Tracking Under Partial Shading Condition. IEEE Transactions on Sustainable Energy, 14(3), 1822–1834. Retrieved 20 December 2023 from https://doi.org/10.1109/TSTE.2023.3250710
  73. Kulaksız, A. A., & Akkaya, R. (2012). A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive. Solar Energy, 86(9), 2366–2375. Retrieved from https://doi.org/10.1016/J.SOLENER.2012.05.006
  74. Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017a). Maximum Power Peak Detection of Partially Shaded PV Panel by Using Intelligent Monkey King Evolution Algorithm. IEEE Transactions on Industry Applications, 53(6), 5734–5743. Retrieved from https://doi.org/10.1109/TIA.2017.2725954
  75. Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017b). MPPT in Dynamic Condition of Partially Shaded PV System by Using WODE Technique. IEEE Transactions on Sustainable Energy, 8(3), 1204–1214. Retrieved from https://doi.org/10.1109/TSTE.2017.2669525
  76. Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017c). Rapid MPPT for Uniformly and Partial Shaded PV System by Using JayaDE Algorithm in Highly Fluctuating Atmospheric Conditions. IEEE Transactions on Industrial Informatics, 13(5), 2406–2416. Retrieved from https://doi.org/10.1109/TII.2017.2700327
  77. Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2018). Normal Harmonic Search Algorithm-Based MPPT for Solar PV System and Integrated With Grid Using Reduced Sensor Approach and PNKLMS Algorithm. IEEE Transactions on Industry Applications, 54(6), 6343–6352. Retrieved from https://doi.org/10.1109/TIA.2018.2853744
  78. Lal, V. N., & Singh, S. N. (2016). Modified particle swarm optimisation-based maximum power point tracking controller for single-stage utility-scale photovoltaic system with reactive power injection capability. IET Renewable Power Generation, 10(7), 899–907. Retrieved from https://doi.org/10.1049/iet-rpg.2015.0346
  79. Larbes, C., Aït Cheikh, S. M., Obeidi, T., & Zerguerras, A. (2009). Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renewable Energy, 34(10), 2093–2100. Retrieved from https://doi.org/10.1016/j.renene.2009.01.006
  80. Li, G., Jin, Y., Akram, M. W., Chen, X., & Ji, J. (2018). Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review. Renewable and Sustainable Energy Reviews, 81, 840–873. Retrieved from https://doi.org/10.1016/J.RSER.2017.08.034
  81. Li, H., & Liu, L. Q. (2014). A novel particle swarm optimization maximum power point tracking control method based on the direct current voltage superposition principle under partially shaded conditions. JVC/Journal of Vibration and Control, 20(9), 1356–1360. Retrieved from https://doi.org/10.1177/1077546312471068
  82. Lian, K. L., Jhang, J. H., & Tian, I. S. (2014). A Maximum Power Point Tracking Method Based on Perturb-and-Observe Combined With Particle Swarm Optimization. IEEE Journal of Photovoltaics, 4(2), 626–633. Retrieved from https://doi.org/10.1109/JPHOTOV.2013.2297513
  83. Liu, L., & Liu, C. (2012). A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading. Journal of Energy Resources Technology, 135(1), 012002. Retrieved from https://doi.org/10.1115/1.4007940
  84. Liu, L., Liu, C., & Gao, H. (2013). A novel improved particle swarm optimization maximum power point tracking control method for photovoltaic array by using current calculated predicted arithmetic under partially shaded conditions. Journal of Renewable and Sustainable Energy, 5(6), 063139. Retrieved from https://doi.org/10.1063/1.4858615
  85. Liu, L., Meng, X., & Liu, C. (2016). A review of maximum power point tracking methods of PV power system at uniform and partial shading. Renewable and Sustainable Energy Reviews, 53, 1500–1507. Retrieved from https://doi.org/10.1016/J.RSER.2015.09.065
  86. Liu, Yi Hua, Chen, J. H., & Huang, J. W. (2015). A review of maximum power point tracking techniques for use in partially shaded conditions. Renewable and Sustainable Energy Reviews, 41, 436–453. Retrieved from https://doi.org/10.1016/j.rser.2014.08.038
  87. Liu, Yi Hwa, Huang, S. C., Huang, J. W., & Liang, W. C. (2012). A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions. IEEE Transactions on Energy Conversion, 27(4), 1027–1035. Retrieved from https://doi.org/10.1109/TEC.2012.2219533
  88. Lyden, S., & Haque, M. E. (2015a). A hybrid simulated annealing and perturb and observe method for maximum power point tracking in PV systems under partial shading conditions. In 2015 Australasian Universities Power Engineering Conference (AUPEC) (pp. 1–6). IEEE. Retrieved from https://doi.org/10.1109/AUPEC.2015.7324803
  89. Lyden, S., & Haque, M. E. (2015b). Maximum Power Point Tracking techniques for photovoltaic systems: A comprehensive review and comparative analysis. Renewable and Sustainable Energy Reviews, 52, 1504–1518. Retrieved from https://doi.org/10.1016/j.rser.2015.07.172
  90. Maniezzo, V. (1996). Ant System: Optimization by a Colony of Cooperating Agents, 26(1), 1–13.
  91. Mao, M., Cui, L., Zhang, Q., Guo, K., Zhou, L., & Huang, H. (2020, November). Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Reports. Elsevier Ltd. Retrieved from https://doi.org/10.1016/j.egyr.2020.05.013
  92. Mary, S. S., Kumar, S. S., Poluru, S. P., & Reddy, M. J. B. (2015). A dual DC output power supply for a stand-alone photovoltaic system. Electric Power Components and Systems, 43(8–10), 939–950. Retrieved from https://doi.org/10.1080/15325008.2015.1012769
  93. Maziar Izadbakhsh,Alireza Rezvani, M. G. (2015). Dynamic response improvement of hybrid system by implementing ANN-GA for fast variation of photovoltaic irradiation and FLC for wind turbine. Archives of Electrical Engineering, 64(2), 291–314.
  94. Meng, Z., & Pan, J. S. (2016). Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowledge-Based Systems, 97(C), 144–157. Retrieved from https://doi.org/10.1016/j.knosys.2016.01.009
  95. Messai, A., Mellit, A., Guessoum, A., & Kalogirou, S. A. (2011). Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation. Solar Energy, 85(2), 265–277. Retrieved from https://doi.org/10.1016/J.SOLENER.2010.12.004
  96. Mirebrahimi SM, S. I. (2016). A Hybrid Intelligent Controlled DC-DC Converter for Photovoltaic energy system application. Journal of Electrical Engineering, 16(1).
  97. Mirhassani, S. M., Golroodbari, S. Z. M., Golroodbari, S. M. M., & Mekhilef, S. (2015). An improved particle swarm optimization based maximum power point tracking strategy with variable sampling time. International Journal of Electrical Power & Energy Systems, 64, 761–770. Retrieved from https://doi.org/10.1016/j.ijepes.2014.07.074
  98. Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51–67. Retrieved from https://doi.org/10.1016/J.ADVENGSOFT.2016.01.008
  99. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. Retrieved from https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
  100. Mitchell, M. (Computer scientist), & Melanie. (1996). An introduction to genetic algorithms. MIT Press.
  1. Miyatake, M., Veerachary, M., Toriumi, F., Fujii, N., & Ko, H. (2011). Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A PSO Approach. IEEE Transactions on Aerospace and Electronic Systems, 47(1), 367–380. Retrieved from https://doi.org/10.1109/TAES.2011.5705681
  2. Mohajeri, H. R., Moghaddam, M. P., Shahparasti, M., & Mohamadian, M. (2012). Development a new algorithm for maximum power point tracking of partially shaded photovoltaic arrays. In 20th Iranian Conference on Electrical Engineering (ICEE2012) (pp. 489–494). IEEE. Retrieved from https://doi.org/10.1109/IranianCEE.2012.6292407
  3. Mohanty, S., Subudhi, B., & Ray, P. K. (2016). A New MPPT Design Using Grey Wolf Optimization Technique for Photovoltaic System Under Partial Shading Conditions. IEEE Transactions on Sustainable Energy, 7(1), 181–188. Retrieved from https://doi.org/10.1109/TSTE.2015.2482120
  4. Mohanty, S., Subudhi, B., & Ray, P. K. (2017). A Grey Wolf-Assisted Perturb & Observe MPPT Algorithm for a PV System. IEEE Transactions on Energy Conversion, 32(1), 340–347. Retrieved from https://doi.org/10.1109/TEC.2016.2633722
  5. Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80, 854–867. Retrieved from https://doi.org/10.1016/j.rser.2017.05.083
  6. Morales, R. H., Rohten, J. A., Garbarino, M. N., Munoz, J. A., Silva, J. J., Pulido, E. S., … Andreu, M. L. (2022). A Novel Global Maximum Power Point Tracking Method Based on Measurement Cells. IEEE Access, 10, 97481–97494. Retrieved 20 December 2023 from https://doi.org/10.1109/ACCESS.2022.3205163
  7. Muthuramalingam, M., & Manoharan, P. S. (2014). Comparative analysis of distributed MPPT controllers for partially shaded stand alone photovoltaic systems. Energy Conversion and Management, 86, 286–299. Retrieved from https://doi.org/10.1016/j.enconman.2014.05.044
  8. Nusaif, A. I., & Mahmood, A. L. (2020). MPPT Algorithms (PSO, FA, and MFA) for PV System Under Partial Shading Condition, Case Study: BTS in Algazalia, Baghdad. International Journal of Smart Grid-IjSmartGrid, 4(3), 100–110.
  9. Oshaba, A. S., Ali, E. S., & Abd Elazim, S. M. (2015). MPPT control design of PV system supplied SRM using BAT search algorithm. Sustainable Energy, Grids and Networks, 2, 51–60. Retrieved from https://doi.org/10.1016/J.SEGAN.2015.04.002
  10. Pakkiraiah, B., & Sukumar, G. D. (2016). Research Survey on Various MPPT Performance Issues to Improve the Solar PV System Efficiency. Journal of Solar Energy, 2016, 1–20. Retrieved from https://doi.org/10.1155/2016/8012432
  11. Pathak, P. K., Yadav, A. K., & Alvi, P. A. (2020, August). Advanced solar MPPT techniques under uniform and non-uniform irradiance: A comprehensive review. Journal of Solar Energy Engineering, Transactions of the ASME. American Society of Mechanical Engineers (ASME). Retrieved from https://doi.org/10.1115/1.4046090
  12. Pattnayak, S. K., Choudhury, S., Nayak, N., Bagarty, D. P., & Biswabandhya, M. (2020). Maximum Power Tracking Harmonic Reduction on grid PV System Using Chaotic Gravitational Search Algorithm Based MPPT Controller. International Conference on Computational Intelligence for Smart Power System and Sustainable Energy, CISPSSE 2020, 29–34. Retrieved from https://doi.org/10.1109/CISPSSE49931.2020.9212268
  13. Pervez, I., Sarwar, A., Tayyab, M., & Sarfraz, M. (2019). Gravitational Search Algorithm (GSA) based Maximum Power Point Tracking in a Solar PV based Generation System. 2019 Innovations in Power and Advanced Computing Technologies, i-PACT 2019, 1–6. Retrieved from https://doi.org/10.1109/i-PACT44901.2019.8960130
  14. Pious, A., & Rajalakshmi, K. (2014). Optimization of Subcell Interconnection for Multijunction Solar Cells Using DC-DC Converter. Applied Mechanics and Materials, 573, 52–58. Retrieved from https://doi.org/10.4028/www.scientific.net/AMM.573.52
  15. Prakash, J., Sahoo, S. K., Karthikeyan, S. P., & Raglend, I. J. (2015). Design of PSO-Fuzzy MPPT Controller for Photovoltaic Application (pp. 1339–1348). Springer, New Delhi. Retrieved from https://doi.org/10.1007/978-81-322-2119-7_130
  16. Premkumar, M., Kumar, C., Sowmya, R., & Pradeep, J. (2021). A novel salp swarm assisted hybrid maximum power point tracking algorithm for the solar photovoltaic power generation systems. Automatika, 62(1), 1–20. Retrieved from https://doi.org/10.1080/00051144.2020.1834062
  17. Rajabioun, R. (2011). Cuckoo Optimization Algorithm. Applied Soft Computing, 11(8), 5508–5518. Retrieved from https://doi.org/10.1016/j.asoc.2011.05.008
  18. Ram, J. P., Babu, T. S., & Rajasekar, N. (2017). A comprehensive review on solar PV maximum power point tracking techniques. Renewable and Sustainable Energy Reviews, 67, 826–847. Retrieved from https://doi.org/10.1016/J.RSER.2016.09.076
  19. Ramaprabha R, M. B. (2012). Genetic Algorithm Based Maximum Power Point Tracking for Partially Shaded Solar Photovoltaic Array. International Journal of Research and Reviews in Information Sciences, 2(1).
  20. Ramaprabha, R., Gothandaraman, V., Kanimozhi, K., Divya, R., & Mathur, B. L. (2011). Maximum power point tracking using GA-optimized artificial neural network for solar PV system. In 2011 1st International Conference on Electrical Energy Systems, ICEES 2011 (pp. 264–268). IEEE. Retrieved from https://doi.org/10.1109/ICEES.2011.5725340
  21. Ramdan A. F. Z., K. B. A. (2014). Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems. International Journal of Electrical, Robotics, Electronics and Communications Engineering, 8(4), 887–892.
  22. Ramli, M. A. M., Twaha, S., Ishaque, K., & Al-Turki, Y. A. (2017). A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renewable and Sustainable Energy Reviews, 67, 144–159. Retrieved from https://doi.org/10.1016/j.rser.2016.09.013
  23. Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232–2248. Retrieved from https://doi.org/10.1016/J.INS.2009.03.004
  24. Rawat, R., & Chandel, S. (2012). Maximum Power Point Tracking Techniques in Solar Photovoltaic Systems-A Review. In National Conference on Emerging Technologies in Renewable Energy and Electrical Engineering (pp. 1–5). Hamirpur.
  25. Rawat, R., & Chandel, S. S. (2013a). Hill climbing techniques for tracking maximum power point in solar photovoltaic systems-a review, 90–95.
  26. Rawat, R., & Chandel, S. S. (2013b). Review of Maximum-Power-Point Tracking Techniques for Solar-Photovoltaic Systems, 177005, 438–448. Retrieved from https://doi.org/10.1002/ente.201300053
  27. (2018). RENEWABLES 2018 GLOBAL STATUS REPORT.
  28. Rezk, H., & Dousoky, G. M. (2016). Technical and economic analysis of different configurations of stand-alone hybrid renewable power systems – A case study. Renewable and Sustainable Energy Reviews, 62, 941–953. Retrieved from https://doi.org/10.1016/J.RSER.2016.05.023
  29. Rezvani, A., Izadbakhsh, M., & Gandomkar, M. (2015). Dynamic modeling of grid-connected photovoltaic system using artificial neural network and genetic algorithm. Journal of Electrical Systems, 11(2), 131–144.
  30. Rezvani, A., Izadbakhsh, M., & Gandomkar, M. (2016). Microgrid dynamic responses enhancement using artificial neural network-genetic algorithm for photovoltaic system and fuzzy controller for high wind speeds. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29(2), 309–332. Retrieved from https://doi.org/10.1002/jnm.2078
  31. Roy Chowdhury, S., & Saha, H. (2010). Maximum power point tracking of partially shaded solar photovoltaic arrays. Solar Energy Materials and Solar Cells, 94(9), 1441–1447. Retrieved from https://doi.org/10.1016/j.solmat.2010.04.011
  32. Saad, N. H., El-Sattar, A. A., & Mansour, A. E.-A. M. (2016). Improved particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability. Renewable Energy, 85, 181–194. Retrieved from https://doi.org/10.1016/j.renene.2015.06.029
  33. Salam, Z., Ahmed, J., & Merugu, B. S. (2013). The application of soft computing methods for MPPT of PV system: A technological and status review. Applied Energy, 107, 135–148. Retrieved from https://doi.org/10.1016/J.APENERGY.2013.02.008
  34. Sangeetha, K., Sudhakar Babu, T., & Rajasekar, N. (2016). Fireworks Algorithm-Based Maximum Power Point Tracking for Uniform Irradiation as Well as Under Partial Shading Condition (pp. 79–88). Springer, New Delhi. Retrieved from https://doi.org/10.1007/978-81-322-2656-7_8
  35. Saravanan, S., & Ramesh Babu, N. (2016). Maximum power point tracking algorithms for photovoltaic system - A review. Renewable and Sustainable Energy Reviews, 57(2), 192–204. Retrieved from https://doi.org/10.1016/j.rser.2015.12.105
  36. Sarvi, M., Ahmadi, S., & Abdi, S. (2015). A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions. Progress in Photovoltaics: Research and Applications, 23(2), 201–214. Retrieved from https://doi.org/10.1002/pip.2416
  37. Seyedmahmoudian, M., Horan, B., Soon, T. K., Rahmani, R., Than Oo, A. M., Mekhilef, S., & Stojcevski, A. (2016). State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review. Renewable and Sustainable Energy Reviews, 64, 435–455. Retrieved from https://doi.org/10.1016/j.rser.2016.06.053
  38. Seyedmahmoudian, Mohammadmehdi, Mekhilef, S., Rahmani, R., Yusof, R., & Asghar Shojaei, A. (2014). Maximum power point tracking of partial shaded photovoltaic array using an evolutionary algorithm: A particle swarm optimization technique. Journal of Renewable and Sustainable Energy, 6(2), 023102. Retrieved from https://doi.org/10.1063/1.4868025
  39. Seyedmahmoudian, Mohammadmehdi, Rahmani, R., Mekhilef, S., Maung Than Oo, A., Stojcevski, A., Soon, T. K., & Ghandhari, A. S. (2015). Simulation and Hardware Implementation of New Maximum Power Point Tracking Technique for Partially Shaded PV System Using Hybrid DEPSO Method. IEEE Transactions on Sustainable Energy, 6(3), 850–862. Retrieved from https://doi.org/10.1109/TSTE.2015.2413359
  40. Shaiek, Y., Ben Smida, M., Sakly, A., & Mimouni, M. F. (2013). Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators. Solar Energy, 90, 107–122. Retrieved from https://doi.org/10.1016/J.SOLENER.2013.01.005
  41. Shankar, G., & Mukherjee, V. (2015). MPP detection of a partially shaded PV array by continuous GA and hybrid PSO. Ain Shams Engineering Journal, 6(2), 471–479. Retrieved from https://doi.org/10.1016/J.ASEJ.2014.10.017
  42. Shareef, H., Mutlag, A. H., & Mohamed, A. (2017). Random Forest-Based Approach for Maximum Power Point Tracking of Photovoltaic Systems Operating under Actual Environmental Conditions. Computational Intelligence and Neuroscience, 2017, 1–17. Retrieved from https://doi.org/10.1155/2017/1673864
  43. Shi, J., Zhang, W., Zhang, Y., Xue, F., & Yang, T. (2015). MPPT for PV systems based on a dormant PSO algorithm. Electric Power Systems Research, 123, 100–107. Retrieved from https://doi.org/10.1016/j.epsr.2015.02.001
  44. Shuying, L., Guodong, Y., Jisheng, L., & Jinyu, L. (n.d.). Simulation of MPPT control using an improved particle swarm optimization algorithm of generation system. BioTechnology: An Indian Journal, 10(7).
  45. Sinha, S., & Chandel, S. S. (2015). Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems. Renewable and Sustainable Energy Reviews, 50, 755–769. Retrieved from https://doi.org/10.1016/j.rser.2015.05.040
  46. Souamy, L. (2012). Research on the MPPT Stability of the Single-Stage and Single-Phase Photovoltaic Grid-Connected System. Applied Mechanics and Materials, 263–266, 2252–2257. Retrieved from https://doi.org/10.4028/www.scientific.net/AMM.263-266.2252
  47. Sudhakar Babu, T., Rajasekar, N., & Sangeetha, K. (2015). Modified Particle Swarm Optimization technique based Maximum Power Point Tracking for uniform and under partial shading condition. Applied Soft Computing, 34, 613–624. Retrieved from https://doi.org/10.1016/j.asoc.2015.05.029
  48. Sudhakar Babu, T., Sangeetha, K., & Rajasekar, N. (2016). Voltage band based improved particle swarm optimization technique for maximum power point tracking in solar photovoltaic system. Journal of Renewable and Sustainable Energy, 8(1), 013106. Retrieved from https://doi.org/10.1063/1.4939531
  49. Sundareswaran, K., Vignesh kumar, V., & Palani, S. (2015). Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Renewable Energy, 75, 308–317. Retrieved from https://doi.org/10.1016/J.RENENE.2014.09.044
  50. Sundareswaran, K., Vigneshkumar, V., Simon, S. P., & Nayak, P. S. R. (2016). Gravitational search algorithm combined with P&O method for MPPT in PV systems. In 2016 IEEE Annual India Conference (INDICON) (pp. 1–5). IEEE. Retrieved from https://doi.org/10.1109/INDICON.2016.7838956
  51. Sundareswaran, Kinattingal, Palani, S., & Vigneshkumar, V. (2015). Development of a hybrid genetic algorithm/perturb and observe algorithm for maximum power point tracking in photovoltaic systems under non-uniform insolation. IET Renewable Power Generation, 9(7), 757–765. Retrieved from https://doi.org/10.1049/iet-rpg.2014.0333
  52. Sundareswaran, Kinattingal, Vigneshkumar, V., Sankar, P., Simon, S. P., Srinivasa Rao Nayak, P., & Palani, S. (2016). Development of an Improved P&O Algorithm Assisted Through a Colony of Foraging Ants for MPPT in PV System. IEEE Transactions on Industrial Informatics, 12(1), 187–200. Retrieved from https://doi.org/10.1109/TII.2015.2502428
  53. Tan, Y., & Zhu, Y. (2010). Fireworks Algorithm for Optimization (pp. 355–364). Springer, Berlin, Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-13495-1_44
  54. Tang, R. li, Wu, Z., & Fang, Y. jun. (2016). Maximum power point tracking of large-scale photovoltaic array. Solar Energy, 134, 503–514. Retrieved from https://doi.org/10.1016/j.solener.2016.05.026
  55. Teshome, D. F., Lee, C. H., Lin, Y. W., & Member, K. L. L. S. (2016). A Modified Firefly Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading, 6777(c), 1–24. Retrieved from https://doi.org/10.1109/JESTPE.2016.2581858
  56. Tian, Z. G., Tian, L., He, J., Huang, Z. H., Zhang, D. H., & Sun, D. Da. (2014). Maximum Power Point Tracking Based on SVR and GA. Applied Mechanics and Materials, 687–691, 3231–3234. Retrieved from https://doi.org/10.4028/www.scientific.net/AMM.687-691.3231
  57. Troudi, F., Jouini, H., Mami, A., Khedher, N. Ben, Aich, W., Boudjemline, A., & Boujelbene, M. (2022). Comparative Assessment between Five Control Techniques to Optimize the Maximum Power Point Tracking Procedure for PV Systems. Mathematics 2022, Vol. 10, Page 1080, 10(7), 1080. Retrieved 20 December 2023 from https://doi.org/10.3390/MATH10071080
  58. Vafaei, S., Rezvani, A., Gandomkar, M., & Izadbakhsh, M. (2015). Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances. Frontiers in Energy, 9(3), 322–334. Retrieved from https://doi.org/10.1007/s11708-015-0362-x
  59. Venkata Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 19–34. Retrieved from https://doi.org/10.5267/j.ijiec.2015.8.004
  60. Venugopalan, R., Krishnakumar, N., Sarjila, R., & Rajasekar, N. (2013). Application of Particle Swarm Optimization Technique for the Design of Maximum Power Point Tracking. Advanced Materials Research, 768, 47–56. Retrieved from https://doi.org/10.4028/www.scientific.net/AMR.768.47
  61. Verma, D., Nema, S., Shandilya, A. M., & Dash, S. K. (2016). Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 54, 1018–1034. Retrieved from https://doi.org/10.1016/J.RSER.2015.10.068
  62. Wang, L., Wei, X., Zhu, T., & Zhang, J. (2014). Two-Stage Chaos Optimization Search Application in Maximum Power Point Tracking of PV Array. Mathematical Problems in Engineering, 2014, 1–11. Retrieved from https://doi.org/10.1155/2014/464835
  63. Wei, L. M., & Li, K. K. (2022). Research on the maximum power point tracking method of photovoltaic based on Newton interpolation-assisted particle swarm algorithm. Clean Energy, 6(3), 496–502. Retrieved 20 December 2023 from https://doi.org/10.1093/CE/ZKAC028
  64. Wu, Z., Yu, D., & Kang, X. (2018). Application of improved chicken swarm optimization for MPPT in photovoltaic system. Optimal Control Applications and Methods, 39(2), 1029–1042. Retrieved from https://doi.org/10.1002/oca.2394