1 Department of Physics, K.N.Toosi University of Technology, Tehran, Iran

2 Department of Physics, Vali-e-Asr University, Rafsanjan, Iran


CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR method. Also all the cells, showed rather high efficiencies (more than 2.65%) regardless of their structure. Here we did the SILAR deposition in room temperature by a simple method which introduces it as a cost effective method for large scale production. Regarding the considerable efficiencies which obtained here by simple SILAR method for various structures, pointed out that SILAR deposition, can be introduced as an effective method for sensitizing electrodes by QDs, in quantum dot sensitized solar cells.


  1. O’regan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized. Nature, 1991,353, 737-740.
  2. Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 1996, 5251, 933-937.
  3. Yu W.W., Qu L., Guo W., Peng X.  Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials 15, 2003, 14, 2854-2860.
  4. Diguna L. J., Shen Q., Kobayashi J., Toyoda T. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells.  Applied Physics Letters 91, 2007, 2, 023116-023116.
  5. Ellingson R.J.,  Beard M.C., Johnson J.C., Yu P., Micic O.I., Nozik A.J., Shabaev A., Efros A.L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.  Nano letters 5, 2005, 5, 865-871.
  6. Barea E.M., Shalom M., Giménez S., Hod I., Mora-Seró I., Zaban A., Bisquert J. Design of injection and recombination in quantum dot sensitized solar cells. J of the American Chem Society 132, 2010, 19, 6834-6839.
  7. Bisquert J., Cahen D.,  Hodes G., Rühle S., Zaban A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. The J of Physical Chem B, 2004,108, 24, 8106-8118.
  8. Braga A., Giménez S., Concina I.,  Vomiero A., Mora-Seró I. Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes. The J of Physical Chem Letters,  2011, 2, 5, 454-460.
  9. Diguna L.J.,  Murakami M., Sato A., Kumagai Y., Ishihara T., Kobayashi N., Shen Q., Toyoda T. Photoacoustic and photoelectrochemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots. Japanese journal of applied physics, 2006, 45, 6S, 5563.
  10. Giménez S., Mora-Seró I., Macor L., Guijarro N., Lana-Villarreal T., Gómez R., Diguna L.J., Shen Q., Toyoda T., Juan Bisquert. Improving the performance of colloidal quantum-dot-sensitized solar cells. N.Tech, 2009, 20, 29, 295204.
  11. Hodes G. Comparison of dye-and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. The J of Physical Chem C, 2008, 112, 46, 17778-17787.
  12. Mora-Seró I., Gimenez S., Fabregat-Santiago F., Gomez R., Shen Q., Toyoda T., Bisquert J. Recombination in quantum dot sensitized solar cells. Accounts of Chem research, 2009, 42, 11, 1848-1857.
  13. Zhang Q., Guo X., Huang X.,  Huang S.,  Li D., Luo Y., Shen Q., Toyoda T., Meng Q. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Physical Chem Chemical Physics13, 2011, 10, 4659-4667.
  14. Kamat P.V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. The J of Physical Chem C, 2008, 112, 48, 18737-18753.
  15. Kamat P.V., Tvrdy K., Baker D.R.,  Radich J.G.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem reviews, 2010, 110, 11, 6664-6688.
  16. Kongkanand A., Tvrdy K., Takechi K., Kuno M., Kamat P.V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J of the American Chem Society, 2008, 130, 12, 4007-4015.
  17. Lee H.J., Wang M., Chen P., Gamelin D.R., Zakeeruddin S.M., Grätzel M., Nazeeruddin M.K. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. N letters, 2009, 9, 12, 4221-4227.
  18. 18. Lee H.J., Bang J., Park J., Kim S.,   Park S.M. Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes. Chem of Mat, 2010, 22, 19, 5636-5643.
  19. Lee Y.L., Lo Y.S. Highly Efficient Quantum‐Dot‐Sensitized Solar Cell Based on Co‐Sensitization of CdS/CdSe. Advanced Functional Materials, 2009, 19, 4, 604-609.
  20. González-Pedro V.,  Xu X., Mora-Sero I.,  Bisquert J.  Modeling high-efficiency quantum dot sensitized solar cells. ACS N, 2010, 4, 10, 5783-5790