Document Type : Research Article


1 Department of EEE, School of Engineering, IIMT University, P. O. Box: 250001, Meerut, UP, India.

2 Department of R&D, School of Engineering, IIMT University, P. O. Box: 250001, Meerut, UP, India.

3 Department of ECE, IIMT College of Engineering, AKTU Lucknow, P. O. Box: 201306, Greater Noida, UP, India.


Solar power energy continues to be a renewable and sustainable source of energy in the coming year due to its cleaner nature and abundant availability. Maximum Power Point Tracking (MPPT) is a technique used in solar power systems to extract maximum power from photovoltaic (PV) modules by tracking the operating point of the modules. MPPT is essential for achieving optimal power output from a solar panel, particularly in variable weather conditions. Traditional MPPT techniques are subject to limitations in handling the partial shading conditions (PSC). To ensure the tracking of maximum power point while boosting the MPPT's overall efficacy and performance, Machine Learning must be integrated into MPPT. As per the reviewer work, ML techniques have the potential to play a crucial role in the development of advanced MPPT systems for solar power systems operating under partial shading conditions and to compare the performance of existing ML-MPPT in terms of accuracy, response time, and efficacy. These review papers technically analyze the result of ML-MPPT techniques and suggest the optimum ML-MPPT tactics that are Q learning, Bayesian Regularization Neural Network (BRNN), and Multivariate Linear Regression Model (MLIR) to achieve optimum outcomes in MPPT under PSC. Further, these techniques can offer efficiency greater than 95%, tracking duration less than 1sec, and error threshold of 0.05. In the future, the reviewer may propose simulation work to compare the optimal algorithms.


Main Subjects

  1. Ahmad, T., & Chen, H. (2020). A review on machine learning forecasting growth trends and their real-time applications in different energy systems. Sustainable Cities and Society, 54, 102010.
  2. Ahmed, K. Rafeeq., Sayeed, F., Logavani, K., Catherine, T. J., Ralhan, S., Singh, M. K., Prabu, R. T., Subramanian, B., & Kassa, A. (2022). Maximum Power point tracking of PV grids using deep learning. International Journal of Photoenergy, 2022, 1–7.
  3. Behera, M. K., Majumder, I., & Nayak, N. (2018). Solar photovoltaic power forecasting using optimized modified extreme learning machine technique. Engineering Science and Technology, an International Journal21(3), 428–438.
  4. Bendib, B., Belmili, H., & Krim, F. (2015). A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable & Sustainable Energy Reviews45, 637–648.
  5. Bollipo, R. B., Mikkili, S., & Bonthagorla, P. K. (2020). Hybrid, optimization, intelligent and classical PV MPPT techniques: Review. CSEE Journal of Power and Energy Systems.
  6. Bounechba, H., Bouzid, A., Nabti, K., & Benalla, H. (2014). Comparison of Perturb & Observe and Fuzzy Logic in Maximum Power Point Tracker for PV Systems. Energy Procedia, 50, 677–684.
  7. Mukherjee, S. Chakraborty, P. K. Guchhait & J. Bhunia. (2020). Machine learning based solar power generation forecasting with and without mppt controller, Int. Conf. for Convergence in Engineering (ICCE), Kolkata,India, vol. 5, pp. 44–48,
  8. Dogra R, Kumar S & Gupta N (2022). Application of Artificial Neural Network to Solar Potential Estimation in Hilly Region of India. (n.d.), Journal of Renewable Energy and Environment, Vol.9 issue 3, pp. 10–16.
  9. Du, Y., Yan, K., Ren, Z., & Xiao, W. (2018). Designing localized MPPT for PV systems using Fuzzy-Weighted Extreme Learning Machine. Energies, 11(10), 2615.
  10. Farayola AM, SunY, Ali (2018) .An Optimization of PV Systems Using Linear Interactions Regression MPPT Techniques. Conference: PowerAfrica 2018 (2018 5th IEEE PES & IAS PowerAfrica Conference) At: Cape Town, South Africa
  11. Fouilloy, A., Voyant, C., Notton, G., Motte, F., Paoli, C., Nivet, M. L., Guillot, E., & Duchaud, J. (2018). Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability. Energy, 165, 620–629.
  12. Guedri, K., Salem, M., Assad, M. E. H., Rungamornrat, J., Mohsen, F. M., & Buswig, Y. M. (2022). PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy analysis. Sustainability, 14(19), 12298.
  13. Hill, J.S.: ‘ Global solar market demand expected to reach 100 Gigawatts in 2017, says solar power Europe’, 2017. Available at, accessed 05 November 2017
  14. International Energy Agency: ‘ Snapshot of global photovoltaic markets 2017’, 2017. Available at of Global P V-1992-2016-1.pdf, accessed 05 November 2017
  15. Ishrat Zaiba, Yadav DK, Dr. Sharma DK & Dr. Nayak S (2022). Review on:challenges solution & scope of iot in solar energy. J east china univ Sci Technol.; 65(4):587-94
  16. Islam, H., Mekhilef, S., Shah, N. M., Soon, T. K., Seyedmahmousian, M., Horan, B., & Stojcevski, A. (2018). Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies, 11(2), 365.
  17. Jordehi ARjan (2015). Maximum power point tracking in photovoltaic (PV) systems: a review of different approaches. Renew Sustain Energy Rev. 2016;65(65):1127-38. energy system, Volume 64,, Pages 761-770
  18. Kalogerakis, C., Koutroulis, E., & Lagoudakis, M. G. (2020). Global MPPT Based on Machine-Learning for PV Arrays Operating under Partial Shading Conditions. Applied Sciences, 10(2), 700.
  19. Kamarzaman, N. A., & Tan, C. W. (2014). A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renewable & Sustainable Energy Reviews, 37, 585–598.
  20. Kermadi, M., & Berkouk, E. M. (2015). A maximum power point tracker based on particle swarm optimization for PV-battery energy system under partial shading conditions. Conference: 3rd International Conference on Control, Engineering & Information Technology CEIT’2015At: Tlemcen, Algeria.
  21. Keyrouz, F. (2018). Enhanced Bayesian Based MPPT Controller for PV Systems. IEEE Power and Energy Technology Systems Journal, 5(1), 11–17.
  22. Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2018). Frame work of maximum power extraction from solar PV panel using self-predictive perturb and observe algorithm. IEEE Transactions on Sustainable Energy, 9(2), 895–903.
  23. Liu, Y., Chen, J., & Huang, J. (2015). A review of maximum power point tracking techniques for use in partially shaded conditions. Renewable & Sustainable Energy Reviews, 41, 436–453.
  24. Lorenzo, E. (1994). Solar electricity: Engineering of Photovoltaic Systems. Earthscan / James & James.
  25. Mahesh, P. V., Meyyappan, S., & Alla, R. R. (2022). Maximum power point tracking using decision-tree machine-learning algorithm for photovoltaic systems. Clean Energy, 6(5), 762–775.
  26. Maleki, A., Haghighi, A., Assad, M. E. H., Mahariq, İ., & Nazari, M. A. (2020). A review on the approaches employed for cooling PV cells. Solar Energy, 209, 170–185.
  27. Memaya, M., Moorthy, C. B., Tahiliani, S., & Sreeni, S. (2019). Machine learning based maximum power point tracking in solar energy conversion systems. International Journal of Smart Grid and Clean Energy, 662–669.
  28. Mirhassani, S. M., Golroodbari, S. Z. M., Golroodbari, S. M. M., & Mekhilef, S. (2015). An improved particle swarm optimization based maximum power point tracking strategy with variable sampling time. International Journal of Electrical Power & Energy Systems, 64, 761–770.
  29. Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable & Sustainable Energy Reviews, 80, 854–867.
  30. Sharifpur, M., Ahmedi, M. H., Mornrat, J. R. & Malik Mohsein, F. (2022). Thermal Management of Solar Photovoltaic Cell by Using Single Walled Carbon Nanotube (SWCNT)/Water: Numerical Simulation and Sensitivity Analysis, Journals Sustainability Volume 14 Issue 18  3390/su141811523
  31. Nazari, M. A., Rungamornrat, J., Prokop, L., Blazek, V., Misak, S., Al-Bahrani, M., & Ahmadi, M. H. (2023). An updated review on integration of solar photovoltaic modules and heat pumps towards decarbonization of buildings. Energy for Sustainable Development, 72, 230–242.
  32. Nkambule, M. S., Hasan, A. N., Ali, A., Hong, J., & Geem, Z. W. (2020). Comprehensive evaluation of machine learning MPPT algorithms for a PV system under different weather conditions. Journal of Electrical Engineering & Technology, 16(1), 411–427.
  33. Nugraha, D. A. Lian, K.L. & Suwarno,( 2020). A Novel MPPT Method Based on Cuckoo Search Algorithm and Golden Section Search Algorithm for Partially Shaded PV System, Canadian Journal of Electrical and Computer Engineering, 42(3):173-182
  34. Podder, A. K., Roy, N. K., & Pota, H. R. (2019). MPPT methods for solar PV systems: a critical review based on tracking nature. Iet Renewable Power Generation, 13(10), 1615–1632.
  35. Pongsakor Takun  et  al (2011).Maximum  Power Point  Tracking using Fuzzy  Logic  Control  for  Photovoltaic  Systems”, International Multi conference of Engineers and Computer Scientists (IMECS), Hong Kong, 2011, vol. 2, pp. 1– 5.
  36. Rabaia, M. K. H., Abdelkareem, M. A., Sayed, E. T., Elsaid, K., Chae, K., Wilberforce, T., & Olabi, A. (2021). Environmental impacts of solar energy systems: A review. Science of the Total Environment, 754, 141989.
  37. Radjai, T., Rahmani, L., Mekhilef, S., & Gaubert, J. (2014). Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE. Solar Energy, 110, 325–337.
  38. Riaz, A., Murtaza, A. F., & Sher, H. A. (2019). Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review. Renewable & Sustainable Energy Reviews, 101, 82–102.
  39. Seyed Mahmoudian, M., Horan, B., Soon, T. K., Rahmani, R., Oo, A. M. T., Mekhilef, S., & Stojcevski, A. (2016). State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review. Renewable & Sustainable Energy Reviews, 64, 435–455.
  40. Sharmin, R., Chowdhury, S. S., Abedin, F., & Rahman, K. (2022). Implementation of an MPPT technique of a solar module with supervised machine learning. Frontiers in Energy Research, 10.
  41. Soon, T. K., Mekhilef, S., Seyedmahmoudian, M., Horan, B., Oo, A. T., & Stojcevski, A. (2018). Improved differential Evolution-Based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation. IEEE Transactions on Industrial Informatics, 14(10), 4322–4333.
  42. Sundareswaran, K., Peddapati, S., Nayak, P. S. R., Simon, S. P., & Palani, S. (2015). Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony. IEEE Transactions on Sustainable Energy, 6(1), 198–209.
  43. Sundareswaran, K., Vigneshkumar, V., Peddapati, S., Simon, S. P., Nayak, P. S. R., & Palani, S. (2016). Development of an Improved P&O Algorithm Assisted Through a Colony of Foraging Ants for MPPT in PV System. IEEE Transactions on Industrial Informatics, 12(1), 187–200.
  44. Takruri M, Farhat M, Barambones O, Ramos-Hernanz JA, TurkiehMJ & BadawiMetal (2020). “Maximum power point tracking of PV system based on machine learning.” Energies.2020;13(3):692.
  45. Yagli, G. M., Yang, D., & Srinivasan, D. (2019). Automatic hourly solar forecasting using machine learning models. Renewable & Sustainable Energy Reviews, 105, 487–498.
  46. Yap, K. Y., Sarimuthu, C. R., & Lim, J. M. (2020). Artificial Intelligence Based MPPT Techniques for Solar Power System: A review. Journal of Modern Power Systems and Clean Energy, 8(6), 1043–1059.