Document Type : Review Article

Authors

1 Department of EEE, School of Engineering, IIMT Univesity, 250001: Meerut, UP, India

2 Department of R&D, School of Engineering, IIMT Univesity, 250001: Meerut, UP, India

3 Department of ECE, IIMT College of Engineering, AKTU Luckhnow, 201306: Greater Noida, UP, India

10.30501/jree.2023.385661.1556

Abstract

Solar power energy continues to be a renewable and sustainable source of energy in the coming year due to its cleaner nature and abundant availability. Maximum Power Point Tracking (MPPT) is a technique used in solar power systems to extract maximum power from photovoltaic (PV) modules by tracking the operating point of the modules. MPPT is essential for achieving optimal power output from a solar panel, particularly in variable weather conditions. Traditional MPPT techniques are subject to limitations in handling the partial shading conditions (PSC). To  ensure the tracking of maximum power point while boosting the MPPT's overall efficacy and performance, Machine Learning must be integrated into MPPT. As per the reviewer work, ML techniques have the potential to play a crucial role in the development of advanced MPPT systems for solar power systems operating under partial shading conditions and to compare the performance of existing ML-MPPT in terms of accuracy, response time, and efficacy. These review papers technically analyze the result of ML-MPPT techniques and suggest the optimum ML-MPPT tactics that are Q learning, Bayesian Regularization Neural Network (BRNN), and Multivariate Linear Regression Model (MLIR) to achieve optimum outcomes in MPPT under PSC. Further, these techniques can offer efficiency greater than 95%, tracking duration less than 1sec, and error threshold of 0.05.In the future, the reviewer may propose simulation work to compare the optimal algorithms.

Keywords

Main Subjects

  1. Rabaia MKH, Abdelkareem MA, Sayed ET, Elsaid K, Chae KJ, Wilberforce T et al.. Environmental impacts of solar energy systems: a review. Sci Total Environ. 2021;754:141989. doi: 10.1016/j.scitotenv.2020.141989, PMID 32920388.
  2. Mohsen Sharifpur, Mohhammed Hossain Ahmedi,jaroon Rungamornrat,Fatima Malik Mohsein,”Thermal Management of Solar Photovoltaic Cell by Using Single Walled Carbon Nanotube (SWCNT)/Water: Numerical Simulation and Sensitivity Analysis”,Journals Sustainability  Volume 14  Issue 18  10.3390/su141811523 https://doi.org/10.3390/su141811523
  3. Lorenzo E. Solar electricity: engineering of photovoltaic systems. James & James: Earthscan Publications; 1994.
  4. Ishrat Zaiba, Yadav DK, Dr. Sharma DK, Dr. Nayak S. Review on:challenges SOLUTION & SCOPE OF IOT IN SOLAR ENERGY. J East China Univ Sci Technol. 2022;65(4):587-94 http://hdlgdxxb.info/index.php/JE_CUST/article/view/477.
  5. Yagli GM, Yang D, Srinivasan D. Automatic hourly solar forecasting using machine learning models. Renew Sustain Energy Rev. 2019;105:487-98. doi: 10.1016/j.rser.2019.02.006.
  6. Ahmad T, Chen H. A review on machine learning forecasting growth trends and their real-time applications in different energy systems. Sustain Cities Soc. 2020;54:102010. doi: 10.1016/j.scs.2019.102010.
  7. Fouilloy A, Voyant C, Notton G, Motte F, Paoli C, Nivet M et al. Solar irradiation prediction with machine learning: forecasting models selection method depending on weather variability. Energy. 2018;165:620-9. doi: 10.1016/j.energy.2018.09.116.
  8. Behera MK, Majumder I, Nayak N.Solar photovoltaic power forecasting using optimized modified extreme learning machine technique. Engineering Science and Technology an International Journal’. Jun 2018;21(3):428-38. doi: 10.1016/j.jestch.2018.04.013.
  9. DuY, YanK, RenZ, XiaoW. Designing localized MPPT for PV systems using fuzzy-weighted extreme learning machine.Energies.2018;11(10):2615. doi: 10.3390/en11102615.
  10. TakruriM, FarhatM, BarambonesO, Ramos-HernanzJA, TurkiehMJ, BadawiMet al.Maximum power point tracking of PV system based on machine learning. Energies.2020;13(3):692. doi: 10.3390/en13030692.
  11. Nkambule MS, Hasan AN, Ali A, HongJ, GeemZW. Comprehensive evaluation of machinelearning MPPT algorithms for a PV system under different weather conditions. JElectr Eng Technol.2021;16(1):411-27. doi:10.1007/s42835-020-00598-0.

12 Memaya M, Moorthy CB, Tahiliani S, Sreeni S.”Machine learning based maximum power point tracking in solar energy conversion systems”.IJSGCE. 2019:662-9. doi: 10.12720/sgce.8.6.662-669.

13 Yung Yap KY, SarimuthuCR, Mun-Yee LimJ. Artificial Intelligence Based MPPT Techniques for Solar Power System: a review.JMod Power Syst Clean Energy. 2020;8(6, Nov):1043-59. doi: 10.35833/MPCE.2020.000159

14 Ruhi Sharmin SS, fayet Chowdhury FA, Mujibur Rahman Kazi,” Implementation of MPPT Technique of Solar Module with Supervised Machine Learning”,Oct 2021. https://doi.org/10.3389/fenrg.2022.932653

15 Kalogerakis C, Koutroulis E, Lagoudakis MG. Global MPPT Based on Machine-Learning for PV Arrays Operating under Partial Shading Conditions. Appl Sci;10(2). doi: 10.3390/app10020700’

16 Mahesh Venketsha,Meyyappan S,Alla Rao," Maximum power point tracking using decision-tree machine-learning algorithm for photovoltaic systems" Clean Energy, Volume 6, Issue 5, October 2022, Pages 762–775, https://doi.org/10.1093/ce/zkac057

17 Rafeeq AhmedK, SayeedF, LogavaniK, CatherineTJ, RalhanS, SinghM, et al. Maximum power point tracking of PV grids using deep learning. IntJPhotoenergy.2022;2022:1-7. doi: 10.1155/2022/1123251.

18    Ahmad R, Murtaza AF, SherHA.P‘Power tracking techniques for efficient operation of photovoltaic array in solar applications.Renew Sustain Energy Rev. Mar 2019;101:82-102. doi: 10.1016/j.rser.2018.10.015.

19 Seyed mahmoudian M, Horan B, SoonT K, Rahmani R, Than Oo AM, Mekhilef Set al. State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – a review.RenewSustain Energy Rev. Oct 2016;64:435-55. doi: 10.1016/j.rser.2016.06.053.

20 H. Islam, S. Mekhilef, N. B. M. Shah, T. K. Soon, M. Seyedmah-mousian, B. Horan, and A. Stojcevski, “Performance evaluation of maximum power point tracking approaches and photovoltaic systems,”Energies, vol. 11, no. 2, pp. 365, Feb. 2018 https://doi.org/10.3390/en11020365

21 Hill JS.Global solar market demand expected to reach 100 gigawatts in 2017, says solar power Europe;2017[cited Nov 05 2017. Available from:https://cleantechnica.com/2017/10/27/global-solar-market-demand-expected-reach-100-gw-2017-solarpower-europe/.

22 .  International Energy Agency: ‘ Snapshot of global photovoltaic markets 2017’, 2017. Available at http://www.ieapvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS-A Snapshot of Global P V-1992-2016-1.pdf, accessed 05 November 2017.

23 Kamarzaman NA, Tan CW.A comprehensive review of maximum power point tracking algorithms for photovoltaic systems.RenewSustain Energy Rev.2014;37:585-98. doi:10.1016/j.rser.2014.05.045

24 P takun,Somyout K,J chettayan," ‘ Maximum power point tracking using fuzzy logic control for photovoltaic systems" Proc. International Multiconference of Engineers and Computer Scientists (IMECS), Hong Kong, 2011, vol. 2, pp. 1– 5. https://www.researchgate.net/publication/50864354_Maximum

25 Bendib B, Belmili H, Krim F. A survey of the most used MPPT methods: conventional and advanced algorithms applied for photovoltaic systems. Renew Sustain Energy Rev. 2015;45:637-48. doi: 10.1016/j.rser.2015.02.009.

26 Bounechba H, Bouzid A, Nabti K, Benalla H. Comparison of perturb & observe and fuzzy logic in maximum power point tracker for PV systems ScienceDirect, Elsvier. Energy Procedia. 2014;50:677-84. doi: 10.1016/j.egypro.2014.06.083.

27 Maleki A, Haghighi A, El Haj Assad M, Mahariq I, Alhuyi Nazari M. A review on the approaches employed for cooling PV cells. Sol Energy. 2020;209:170-85.doi:10.1016/j.solener.2020.08.083.

28 Jordehi AR. Maximum power point tracking in photovoltaic (PV) systems: a review of different approaches. Renew Sustain Energy Rev. 2016;65(65):1127-38. doi: 10.1016/j.rser.2016.07.053. energy system, Volume 64, January 2015, Pages 761-770 https://doi.org/10.1016/j.ijepes.2014.07.074

29 Podder AK, Roy NK, Pota HR. MPPT methods for solar PV systems: a critical review based on tracking nature. IET Renew Power Gener. Jul 2019;13(10):1615-32. doi: 10.1049/iet-rpg.2018.5946.

 

30 Radjai T, Rahmani L, Mekhilef S, Gaubert JP. “Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using d-SPACE”. Sol Energy. Dec 2014;110:325-37. doi: 10.1016/j.solener.2014.09.014.

31 LiuY-H, ChenJ-H, HuangJ-W.A review of maximum power point tracking techniques for use in partially shaded conditions. Renew Sustain Energy Rev. 2015;41:436-53. doi: 10.1016/j.rser.2014.08.038.

32 Kumar N, HussainI, SinghB, PanigrahiBK. Framework of maximumpowerextraction from solar PV panelusingselfpredictiveperturb and observealgorithm. IEEE Trans Sustain Energy.2018;9(2):895-903. doi: 10.1109/TSTE.2017.2764266.

33 Alhuyi NazariM, RungamornratJ, ProkopL, BlazekV, MisakS, Al-BahraniMet al.. An updated review on integration of solar photovoltaic modules and heat pumps towards decarbonization of buildings. Energy for Sustainable Development.Feb 2023;72:230-42. doi: 10.1016/j.esd.2022.12.018.

34 KeyrouzF.Enhanced Bayesian based MPPT controller for PV systems.IEEE PowerEnergy TechnolSystJ. Mar 2018;5(1):11-7. doi: 10.1109/JPETS.2018.2811708.

35  TeyKS, MekhilefS, Seyedmahmoudian M, Horan B, OoAT, StojcevskiA. “Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation”.IEEE Trans Ind Inf Jan 2018;14(10):4322-33. doi:10.1109/TII.2018.2793210.

36 Debottam Mukherjee SC, Pabitra K,” Machine Learning based Solar Power Generation Forecasting with and without MPPT Controller” 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), 10.1109/ICCE50343.2020.9290685

37 FarayolaAM, SunY, AliA. Optimization of PV Systems Using Linear Interactions Regression MPPT Techniques. doi: 10.1109/PowerAfrica.2018.8521064:545-50’

38 GuedriK, SalemM, Assad MEH, RungamornratJ, Malek MohsenF, BuswigYM. PV/Thermal as Promising Technologies in Buildings: a Comprehensive Review on Energy Analysis.Sustainability.2022;14(19):12298.doi: 10.3390/su141912298.

39  A. Mohapatra, B. Nayak, P. Das, and K. B. Mohanty, “A reviewon MPPT techniques of PV system under partial shading condition,”Renewable and Sustainable Energy Reviews, vol. 80, pp. 854–867, Dec2017. DOI: 10.1016/j.rser.2017.05.083

40 DograR, KumarS, GuptaN, Application of Artificial Neural Network to Solar Potential Estimation in Hilly Region of India”,JREE, olume 9, Issue 3September 2022 Pages 10-16,  https://doi.org/10.30501/jree.2022.307064.1267

41 BollipoRB, MikkiliS.Senior member, and Praveen Kumar Bonthagorla, Hybrid, optimization, intelligent and classical PV MPPT techniques: Review. CSEE JPES. 2020. doi: 10.17775/CSEEJPES.2019.02720

42 Mirhassani SM, Golroodbari SZM, Golroodbari SMM, MekhilefS. An improved particle swarm optimization based maximum power point tracking strategy with variable sampling time’International Journal of Electrical power and systems, doi: 10.1016/j.ijepes.2014.07.074.

43 Kermadi M, BerkoukEM. A maximum power point tracker based on particle swarm optimization for PV-battery energy system under partial shading conditions’In Conference: 3rd International Conference on Control, Engineering & Information Technology CEIT’2015At: Tlemcen, Algeria. DOI:10.1109/CEIT.2015.7233061

44 Sundareswaran K, VigneshkumarV, SankarP, SimonSP, Srinivasa Rao NayakPSR, PalaniS.Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system. IEEE Trans Ind Inf’.Feb 2016;12(1):187-200. doi: 10.1109/TII.2015.2502428.

45 Nugraha D A Lian KL, Suwarno. A Novel MPPT Method Based on Cuckoo Search Algorithm and Golden Section Search Algorithm for Partially Shaded PV System’.CanJElectrComputEng. 2019;42(3):173-82. doi: 10.1109/CJECE.2019.2914723.

46  SundareswaranK, SankarP, NayakPSR, SimonSP, PalaniS.Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony.IEEE TransSustain Energy. Jan 2015;6(1):198-209. doi: 10.1109/TSTE.2014.2363521