Document Type : Research Article


1 Department of Mechanical Engineerig, Yazd University, Yazd, Iran.

2 Department of Engineerig, Meybod University, Meybod, Yazd, Iran.



Desalination stands out as a prominent method for obtaining fresh water from saltwater sources. The focus of this study revolves around a dehumidifier-dehumidifier system within a closed air-open water desalination framework, exploring two distinct modes: one without integration with solar collectors and the other incorporating solar collectors.Optimal conditions emerged with a fresh water circulation rate of 3 L/min and an incoming salt water flow rate of 1 L/min, resulting in a commendable maximum recovery ratio of 5.33%. Subsequently, in these optimal operating conditions, photovoltaic-thermal (PVT) panels were introduced to the desalination system, yielding insightful results. The output gain ratio (GOR), indicating the efficiency of converting heat to water evaporation, was 0.78 without connecting panels and 0.48 when panels were integrated. With panels connected, the desalination system achieved a peak fresh water production of 2.04 L/hr. Notably, the humidifier tower exhibited an impressive efficiency of 97%, while the dehumidifier tower operated at 40%. The solar collectors contributed significantly, meeting approximately 10% of the system's heating requirements and satisfying 7.3% of its electrical needs. The findings underscore the viability of integrating solar technology into desalination systems, showcasing not only increased fresh water output but also a noteworthy reduction in reliance on conventional energy sources. This innovative approach aligns with the global pursuit of sustainable and efficient water management solutions.


Main Subjects

  1. Abdullah, A., Panchal, H., Alawee, W. H., & Omara, Z. (2023). Methods used to improve solar still performance with generated turbulence for water desalination-detailed review. Results in Engineering, 101251.
  2. Arabi, M. K. A., & Reddy, K. V. (2003). Performance evaluation of desalination processes based on the humidification/dehumidification cycle with different carrier gases. Desalination, 156(1-3), 281-293.
  3. Bose, D., Goyal, K., & Bhardwaj, V. (2017). Design and development of a solar parabolic concentrator and integration with a solar desalination system. GRIN Verlag.
  4. Chehayeb, K. M., Narayan, G. P., & Zubair, S. M. (2014). Use of multiple extractions and injections to thermodynamically balance the humidification dehumidification desalination system. International Journal of Heat and Mass Transfer, 68, 422-434.
  5. Dehghani, S., Date, A., & Akbarzadeh, A. (2018). Performance analysis of a heat pump driven humidification-dehumidification desalination system. Desalination, 445, 95-104.
  6. Dehghani, S., Date, A., & Akbarzadeh, A. (2019). An experimental study of brine recirculation in humidification-dehumidification desalination of seawater. Case Studies in Thermal Engineering, 14, 100463.
  7. Dehghani, S., Mahmoudi, F., & Akbarzadeh, A. (2020). Experimental performance evaluation of humidification–dehumidification system with direct-contact dehumidifier. Journal of Energy Resources Technology, 142(1).
  8. Easa, A. S., Khalaf-Allah, R. A., Mohamed, S. M., Habba, M. I., & Tolan, M. T. (2024). Optimization of Humidification-Dehumidification solar desalination Unit: Comparative analysis. Applied Thermal Engineering, 236, 121610.
  9. Elattar, H., Fouda, A., & Nada, S. (2016). Performance investigation of a novel solar hybrid air conditioning and humidification–dehumidification water desalination system. Desalination, 382, 28-42.
  10. Elhenawy, Y., Bassyouni, M., Fouad, K., Sandid, A. M., Abu-Zeid, M. A. E.-R., & Majozi, T. (2023). Experimental and numerical simulation of solar membrane distillation and humidification–dehumidification water desalination system. Renewable Energy, 215, 118915.
  11. Fang, S.-C. (2022). Evaluation of low energy consumption control for seawater desalination on Penghu Island. Energy & Environment, 0958305X221127649.
  12. Garcia-Rodriguez, L. (2002). Seawater desalination driven by renewable energies: a review. Desalination, 143(2), 103-113.
  13. Hamed, M. H., Kabeel, A., Omara, Z., & Sharshir, S. (2015). Mathematical and experimental investigation of a solar humidification–dehumidification desalination unit. Desalination, 358, 9-17.
  14. Herez, A., El Hage, H., Lemenand, T., Ramadan, M., & Khaled, M. (2020). Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems. Solar Energy, 207, 1321-1347.
  15. Hermosillo, J.-J., Arancibia-Bulnes, C. A., & Estrada, C. A. (2012). Water desalination by air humidification: Mathematical model and experimental study. Solar Energy, 86(4), 1070-1076.
  16. Hosseini, S., & Sarhaddi, F. (2017). Performance assessment of a humidification-dehumidification desalination unit connected to photovoltaic thermal collectors. Amirkabir Journal of Mechanical Engineering, 49(3), 653-662.
  17. Kadhom, M. (2023). A review on the polyamide thin film composite (TFC) membrane used for desalination: Improvement methods, current alternatives, and challenges. Chemical Engineering Research and Design.
  18. Lai, L., Wang, X., Kefayati, G., & Hu, E. (2023). Analysis of a novel solid desiccant evaporative cooling system integrated with a humidification-dehumidification desalination unit. Desalination, 550, 116394.
  19. Lall, U., Heikkila, T., Brown, C., & Siegfried, T. (2008). Water in the 21st century: Defining the elements of global crises and potential solutions. Journal of International Affairs, 1-17.
  20. Luberti, M., & Capocelli, M. (2023). Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination. Energies, 16(17), 6352.
  21. Mortezapour, H., Mostafavi, M. H., Jafari Naeimi, K., & Shamsi, M. (2018). Experimental Analysis of a Humidification-Dehumidification Solar Desalination System Equipped with a Photovoltaic-Thermal Collector. Iranian Journal of Biosystems Engineering, 49(2), 295-305.
  22. Naeini, A., Jalali, A., & Houshfar, E. (2023). Thermodynamic and thermoeconomic modeling of humidification-dehumidification desalination systems with bubble column dehumidifier. Desalination, 568, 117005.
  23. Narayan, G. P., Mistry, K. H., Sharqawy, M. H., Zubair, S. M., & Lienhard, J. H. (2010). Energy effectiveness of simultaneous heat and mass exchange devices.
  24. Narayan, G. P., Sharqawy, M. H., Summers, E. K., Lienhard, J. H., Zubair, S. M., & Antar, M. A. (2010). The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renewable and sustainable energy reviews, 14(4), 1187-1201.
  25. Sahay, A., Sethi, V., Tiwari, A., & Pandey, M. (2015). A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS). Renewable and sustainable energy reviews, 42, 306-312.
  26. Srija, M., Bhandari, S., & Prasad, T. (2022). Quaternary Recycling Studies for Desalination Membrane Management. In Sustainable Chemical, Mineral and Material Processing: Select proceedings of 74th Annual Session of Indian Institute of Chemical Engineers (CHEMCON-2021) (pp. 121-132). Springer.
  27. Srithar, K., & Rajaseenivasan, T. (2017). Performance analysis on a solar bubble column humidification dehumidification desalination system. Process safety and environmental protection, 105, 41-50.
  28. Xue, T., Yang, F., Zhao, X., He, F., Wang, Z., Wali, Q., Fan, W., & Liu, T. (2023). Portable solar interfacial evaporator based on polyimide nanofiber aerogel for efficient desalination. Chemical Engineering Journal, 461, 141909.
  29. Zhou, S., Zhang, K., Yang, W., Zhu, X., & Shen, S. (2023). Evaluation of a heat pump coupled two-stage humidification-dehumidification desalination system with waste heat recovery. Energy Conversion and Management, 278, 116694.