Document Type : Research Article

Authors

1 Department of Electrical Engineering, University Institute of Technology, HPU, Shimla, India.

2 Renewable Energy Lab, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia.

10.30501/jree.2024.407775.1650

Abstract

The sun serves as the primary energy source, providing our planet with the essential energy for sustaining life. To efficiently harness this energy, photovoltaic cells, commonly known as PV cells, are employed. These cells convert the solar energy they receive into electrical energy. The operational point of the solar cell, delivering maximum output power, is referred to as the maximum power point (MPP). However, as light availability and temperature fluctuate throughout the day, the MPP also varies accordingly. To maintain constant operation at the MPP, Maximum Power Point Tracking (MPPT) algorithms are employed to trace the MPP during module operation. These algorithms can be categorized into four groups: classical, intelligent, optimization, and hybrid, based on the tracking algorithm utilized. Each MPPT algorithm, existing in these categories, comes with its own set of advantages and limitations. This paper extensively reviews fifteen algorithms categorized under different groups. The review concludes with a comparative analysis of these algorithms, considering various parameters such as cost, complexity, tracking accuracy, and sensed parameters in a succinct manner. The paper focuses on elucidating the necessity of MPPT algorithms, their classification as per existing literature, and a comparative assessment of the studied MPPT algorithms. This comprehensive review aims to address advancements in this field, paving the way for further research.

Keywords

Main Subjects

  1. Adly, M., & Besheer, A. H. (2012, July). An optimized fuzzy maximum power point tracker for stand-alone photovoltaic systems: Ant colony approach. In 2012 7th IEEE conference on industrial electronics and applications (ICIEA)(pp. 113-119). IEEE. https://doi.org/10.1093/benz/9780199773787.article.b00000988 
  2. Ahmad, J. (2010, October). A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays. In 2010 2nd International Conference on Software Technology and Engineering (Vol. 1, pp. V1-247). IEEE. https://doi.org/10.1109/icste.2010.5608868
  3. Baimel, D., Tapuchi, S., Levron, Y., & Belikov, J. (2019). Improved fractional open circuit voltage MPPT methods for PV systems. Electronics, 8(3), https://doi.org/10.3390/electronics8030321
  4. Batarseh, M. G., & Za'ter, M. E. (2018). Hybrid maximum power point tracking techniques: A comparative survey, suggested classification and uninvestigated combinations. Solar Energy, 169, 535-555. https://doi.org/10.1016/j.solener.2018.04.045 
  5. Belkaid, A., Colak, U., & Kayisli, K. (2017, November). A comprehensive study of different photovoltaic peak power tracking methods. In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1073-1079). IEEE. https://doi.org/10.1109/icrera.2017.8191221 
  6. Bennis Ghita, K. M., & Ahmed, L. (2018). Application and comparison between the conventional methods and PSO method for maximum power point extraction in photovoltaic systems under partial shading conditions. Int J Pow Elec & Dri Syst, 9(2), 631-640. https://doi.org/10.11591/ijpeds.v9.i2.pp631-640 
  7. Blange, R., Mahanta, C., & Gogoi, A. K. (2015, June). MPPT of solar photovoltaic cell using perturb & observe and fuzzy logic controller algorithm for buck-boost DC-DC converter. In 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE) (pp. 1-5). IEEE. https://doi.org/10.1109/epetsg.2015.7510125 
  8. Bollipo, R. B., Mikkili, S., & Bonthagorla, P. K. (2020). Hybrid, optimal, intelligent and classical PV MPPT techniques: A review. CSEE Journal of Power and Energy Systems, 7(1), 9-33. https://doi.org/10.17775/cseejpes.2019.02720 
  9. Boonmee, C., & Kumsuwan, Y. (2013, May). Modified maximum power point tracking based-on ripple correlation control application for single-phase VSI grid-connected PV systems. In 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 1-6). IEEE. https://doi.org/10.1109/ecticon.2013.6559503 
  10. Brunton, S. L., Rowley, C. W., Kulkarni, S. R., & Clarkson, C. (2010). Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control. IEEE transactions on power electronics, 25(10), 2531-2540. https://doi.org/10.1109/tpel.2010.2049747 
  11. Casadei, D., Grandi, G., & Rossi, C. (2006). Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking. IEEE Transactions on Energy Conversion, 21(2), 562-568. https://doi.org/10.1109/tec.2005.853784 
  12. Catherine, T. J. (2013). A Digital MPPT Control for the Optimization of a Photo Voltaic System as a Battery Charger. International Journal of Emerging Technology and Advanced Engineering, 3(4). (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 4, April 2013). https://www.academia.edu/download/36794892/MPPT_paper_.pdf
  13. Cheng, H., Li, S., Fan, Z., & Liu, L. (2021, May). Intelligent MPPT Control Methods for Photovoltaic System: A review. In 2021 33rd Chinese Control and Decision Conference (CCDC) (pp. 1439-1443). https://doi.org/10.1109/ccdc52312.2021.9602802 
  14. Datta, M., & Senjyu, T. (2013). Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system. IEEE Transactions on Smart Grid, 4(1), 479-488. https://doi.org/10.1109/tsg.2012.2237044 
  15. Dogra, R., Kumar, S., & Gupta, N. (2022). Application of Artificial Neural Network to Solar Potential Estimation in Hilly Region of India. Journal of Renewable Energy and Environment, 9(3), 10-16. https://www.jree.ir/article_149613.html.
  16. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 26(1), 29-41. https://doi.org/10.1109/3477.484436 
  17. Elobaid, L. M., Abdelsalam, A. K., & Zakzouk, E. E. (2012, October). Artificial neural network based maximum power point tracking technique for PV systems. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society(pp. 937-942). IEEE. https://doi.org/10.1109/iecon.2012.6389165 
  18. Esram, T., & Chapman, P. L. (2007). Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on energy conversion, 22(2), 439-449. https://doi.org/10.1109/tec.2006.874230 
  19. Giraud, F., & Salameh, Z. M. (1999). Analysis of the effects of a passing cloud on a grid-interactive photovoltaic system with battery storage using neural networks. IEEE Transactions on Energy Conversion, 14(4), 1572-1577. https://doi.org/10.1109/60.815107 
  20. Fahad, S., Mahdi, A. J., Tang, W. H., Huang, K., & Liu, Y. (2018, November). Particle swarm optimization-based DC-link voltage control for two-stage grid connected PV inverter. In 2018 International Conference on Power System Technology (POWERCON)(pp. 2233-2241) IEEE. https://doi.org/10.1109/powercon.2018.8602128 
  21. Fapi, C. B. N., Wira, P., Kamta, M., Badji, A., & Tchakounte, H. (2019). Real-time experimental assessment of Hill Climbing MPPT algorithm enhanced by estimating a duty cycle for PV system. International Journal of Renewable Energy Research. https://doi.org/10.20508/ijrer.v9i3.9432.g7705 
  22. Figueiredo, S., & e Silva, R. N. A. L. (2021). Hybrid mppt technique pso-p&o applied to photovoltaic systems under uniform and partial shading conditions. IEEE Latin America Transactions, 19(10), 1610-1617. https://doi.org/10.1109/tla.2021.9477222 
  23. Giraud, F., & Salameh, Z. M. (1999). Analysis of the effects of a passing cloud on a grid-interactive photovoltaic system with battery storage using neural networks. IEEE Transactions on Energy Conversion, 14(4), 1572-1577. https://doi.org/10.1109/60.815107 
  24. Gupta, N., & Garg, R. (2017). Tuning of asymmetrical fuzzy logic control algorithm for SPV system connected to grid. International journal of hydrogen energy, 42(26), 16375-16385.  https://doi.org/10.1016/j.ijhydene.2017.05.103
  25. Gupta, N., Garg, R., & Kumar, P. (2015, December). Characterization study of PV module connected to microgrid. In 2015 Annual IEEE India Conference (INDICON) (pp. 1-6). IEEE.  https://doi.org/10.1109/INDICON.2015.7443360.
  26. Gupta, N., Garg, R., & Kumar, P. (2017). Sensitivity and reliability models of a PV system connected to grid. Renewable and Sustainable Energy Reviews, 69, 188-196. https://doi.org/10.1016/j.rser.2016.11.031
  27. Hohm, D. P., & Ropp, M. E. (2003). Comparative study of maximum power point tracking algorithms. Progress in photovoltaics: Research and Applications, 11(1), 47-62. https://doi.org/10.1002/pip.459
  28. Huynh, D. C., & Dunnigan, M. W. (2016). Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel. IEEE transactions on sustainable energy, 7(4), 1421-1429. https://doi.org/10.1109/tste.2016.2556678
  29. Ishaque, K., Salam, Z., Amjad, M., & Mekhilef, S. (2012). An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation. IEEE transactions on Power Electronics, 27(8), 3627-3638. https://doi.org/10.1109/tpel.2012.2185713.
  30. Jiang, L. L., Maskell, D. L., & Patra, J. C. (2013). A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy and Buildings, 58, 227-236. https://doi.org/10.1016/j.enbuild.2012.12.001
  31. Bennis Ghita, K. M., & Ahmed, L. (2018). Application and comparison between the conventional methods and PSO method for maximum power point extraction in photovoltaic systems under partial shading conditions. Int J Pow Elec & Dri Syst, 9(2), 631-640. https://doi.org/10.11591/ijpeds.v9.i2.pp631-640
  32. Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68, 1-18. https://doi.org/10.1016/j.rser.2016.09.132
  33. Kottas, T. L., Boutalis, Y. S., & Karlis, A. D. (2006). New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks. IEEE Transactions on Energy conversion, 21(3), 793-803. https://doi.org/10.1109/tec.2006.875430 
  34. Krishnan G, S., Kinattingal, S., Simon, S. P., & Nayak, P. S. R. (2020). MPPT in PV systems using ant colony optimisation with dwindling population. IET Renewable Power Generation, 14(7), 1105-1112. https://doi.org/10.1049/iet-rpg.2019.0875
  35. Kumar, A., Kumar, D., & Jarial, S. K. (2017). A review on artificial bee colony algorithms and their applications to data clustering. Cybernetics and Information Technologies, 17(3), 3-28. https://doi.org/10.1515/cait-2017-0027 
  36. Kumar, M., Panda, K. P., Rosas-Caro, J. C., Valderrabano-Gonzalez, A., & Panda, G. (2023). Comprehensive Review of Conventional and Emerging Maximum Power Point Tracking Algorithms for Uniformly and Partially Shaded Solar Photovoltaic Systems. IEEE Access (11). https://doi.org/10.1109/access.2023.3262502
  37. Kumar, S., & Kaur, T. (2020). Efficient solar radiation estimation using cohesive artificial neural network technique with optimal synaptic weights. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(6), 862-873. https://doi.org/10.1177/0957650919878318
  38. Kumar, S., Sharma, S., Sood, Y. R., Upadhyay, S., & Kumar, V. (2022). A review on different parametric aspects and sizing methodologies of hybrid renewable energy system. Journal of The Institution of Engineers (India): Series B, 103(4), 1345-1354. https://doi.org/10.1007/s40031-022-00738-2 
  39. Li, N., Mingxuan, M., Yihao, W., Lichuang, C., Lin, Z., & Qianjin, Z. (2019, July). Maximum power point tracking control based on modified ABC algorithm for shaded PV system. In 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE) (pp. 1-5). IEEE. https://doi.org/10.23919/eeta.2019.8804525
  40. Li, X., Wen, H., Hu, Y., & Jiang, L. (2019). A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application. Renewable energy, 130, 416-427. https://doi.org/10.1016/j.renene.2018.06.071
  41. Lian, K. L., Jhang, J. H., & Tian, I. S. (2014). A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization. IEEE journal of photovoltaics, 4(2), 626-633. https://doi.org/10.1109/jphotov.2013.2297513
  42. Loukriz, A., Haddadi, M., & Messalti, S. (2016). Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems. ISA transactions, 62, 30-38. https://doi.org/10.1016/j.isatra.2015.08.006
  43. Reatti, A., & Balzani, M. (2005). Neural network-based model of a PV array for the optimum performance of PV system. In Proceedings of IEEE Research in Microelectronics and Electronics, (2), 123-126). IEEE. https://doi.org/10.1109/rme.2005.1542952
  44. Mahdi, A. S., Mahamad, A. K., Saon, S., Tuwoso, T., Elmunsyah, H., & Mudjanarko, S. W. (2020). Maximum power point tracking using perturb and observe, fuzzy logic and ANFIS. SN Applied Sciences, (2), 1-9. https://doi.org/10.1007/s42452-019-1886-1
  45. Mahdi, A. S., Mahamad, A. K., Saon, S., Tuwoso, T., Elmunsyah, H., & Mudjanarko, S. W. (2020). Maximum power point tracking using perturb and observe, fuzzy logic and ANFIS. SN Applied Sciences, (2), 1-9. https://doi.org/10.1007/s42452-019-1886-1 
  46. Masoum, M. A., Dehbonei, H., & Fuchs, E. F. (2002). Theoretical and experimental analyses of photovoltaic systems with voltageand current-based maximum power-point tracking. IEEE Transactions on energy conversion, 17(4), 514-522. https://doi.org/10.1109/tec.2002.805205
  47. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, (69), 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 
  48. Miyatake, M., Toriumi, F., Endo, T., & Fujii, N. (2007, September). A Novel maximum power point tracker controlling several converters connected to photovoltaic arrays with particle swarm optimization technique. In 2007 European conference on power electronics and applications (pp. 1-10). IEEE. https://doi.org/10.1109/epe.2007.4417640 
  49. Mohanty, S., Subudhi, B., & Ray, P. K. (2015). A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Transactions on Sustainable Energy, 7(1), 181-188. https://doi.org/10.1109/tste.2015.2482120 
  50. Mohanty, S., Subudhi, B., & Ray, P. K. (2016). A grey wolf-assisted perturb & observe MPPT algorithm for a PV system. IEEE Transactions on Energy Conversion, 32(1), 340-347. https://doi.org/10.1109/tec.2016.2633722 
  51. Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, (80), 854-867. https://doi.org/10.1016/j.rser.2017.05.083 
  52. Moo, C. S., & Wu, G. B. (2014). Maximum power point tracking with ripple current orientation for photovoltaic applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(4), 842-848. https://doi.org/10.1109/jestpe.2014.2328577 
  53. Mosavi, S. K., Jalalian, E., Soleimenian, F., & Branch, U. (2018). A comprehensive survey of grey wolf optimizer algorithm and its application. Int. Adv. Robot. Expert Syst., 1(6), 23-45. https://doi.org/10.1016/j.eswa.2022.118267 
  54. Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, (68), 1-18. https://doi.org/10.1016/j.rser.2016.09.132 
  55. Nnadi, D. B. N. (2012). Environmental/climatic effect on stand-alone solar energy supply performance for sustainable energy.Nigerian Journal of Technology, 31(1), 79-88. https://doi.org/10.4314/njt.v36i2.34 
  56. Pandey, A., & Srivastava, S. (2019). Perturb & observe MPPT technique used for PV system under different environmental conditions. Int. Res. J. Eng. Technol, 6, 2829-2835. https://www.irjet.net/archives/V6/i4/IRJET-V6I4602.pdf
  57. Podder, A. K., Roy, N. K., & Pota, H. R. (2019). MPPT methods for solar PV systems: a critical review based on tracking nature. IET Renewable Power Generation, 13(10), 1615-1632. https://doi.org/10.1049/iet-rpg.2018.5946
  58. Priyadarshi, N., Azam, F., Sharma, A. K., & Vardia, M. (2020). An adaptive neuro-fuzzy inference system-based intelligent grid-connected photovoltaic power generation. In Advances in Computational Intelligence: Proceedings of Second International Conference on Computational Intelligence 2018 (pp. 3-14). Springer https://doi.org/10.1007/978-981-13-8222-2_1 
  59. Priyadarshi, N., Padmanaban, S., Maroti, P. K., & Sharma, A. (2018). An extensive practical investigation of FPSO-based MPPT for grid integrated PV system under variable operating conditions with anti-islanding protection. IEEE Systems Journal, 13(2), 1861-1871. https://doi.org/10.1109/jsyst.2018.2817584 
  60. Priyadarshi, N., Padmanaban, S., Sagar Bhaskar, M., Blaabjerg, F., & Sharma, A. (2018). Fuzzy SVPWM‐based inverter control realisation of grid integrated photovoltaic‐wind system with fuzzy particle swarm optimisation maximum power point tracking algorithm for a grid‐connected PV/wind power generation system: hardware implementation. IET Electric Power Applications, 12(7), 962-971. https://doi.org/10.1049/iet-epa.2017.0804
  61. Kundu, S., Gupta, N., & Kumar, P. (2016, November). Review of solar photovoltaic maximum power point tracking techniques. In 2016 7th India International Conference on Power Electronics (IICPE) (pp. 1-6). IEEE. https://doi.org/10.1109/iicpe.2016.8079494 
  62. Sa-ngawong, N., & Ngamroo, I. (2015). Intelligent photovoltaic farms for robust frequency stabilization in multi-area interconnected power system based on PSO-based optimal Sugeno fuzzy logic control. Renewable Energy, 74, 555-567. https://doi.org/10.1016/j.renene.2014.08.057
  63. Sera, D., Kerekes, T., Teodorescu, R., & Blaabjerg, F. (2006, August). Improved MPPT algorithms for rapidly changing environmental conditions. In 2006 12th International Power Electronics and Motion Control Conference (pp. 1614-1619). IEEE. https://doi.org/10.1109/epepemc.2006.283440 
  64. Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., & Teodorescu, R. (2013). On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE journal of photovoltaics, 3(3), 1070-1078. https://doi.org/10.1109/jphotov.2013.2261118 
  65. Sharma, P., & Agarwal, V. (2013). Exact maximum power point tracking of grid-connected partially shaded PV source using current compensation concept. IEEE Transactions on Power Electronics, 29(9), 4684-4692. https://doi.org/10.1109/tpel.2013.2285075 
  66. Sher, H. A., Murtaza, A. F., Noman, A., Addoweesh, K. E., & Chiaberge, M. (2015). An intelligent control strategy of fractional short circuit current maximum power point tracking technique for photovoltaic applications. Journal of renewable and sustainable Energy, 7(1). https://doi.org/10.1063/1.4906982 
  67. Sher, H. A., Murtaza, A. F., Noman, A., Addoweesh, K. E., Al-Haddad, K., & Chiaberge, M. (2015). A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. IEEE Transactions on sustainable energy, 6(4), 1426-1434. https://doi.org/10.1109/tste.2015.2438781 
  68. Shinde, U. K., Kadwane, S. G., Gawande, S. P., & Keshri, R. (2016, December). Solar PV emulator for realizing PV characteristics under rapidly varying environmental conditions. In 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1-5). IEEE. https://doi.org/10.1109/pedes.2016.7914286 
  69. Spiazzi, G., Buso, S., & Mattavelli, P. (2009, September). Analysis of MPPT algorithms for photovoltaic panels based on ripple correlation techniques in presence of parasitic components. In 2009 Brazilian Power Electronics Conference (pp. 88-95). IEEE. https://doi.org/10.1109/cobep.2009.5347738 
  70. Srinivas, C. L., & Sreeraj, E. S. (2016). A maximum power point tracking technique based on ripple correlation control for single phase photovoltaic system with fuzzy logic controller. Energy Procedia, 90, 69-77. https://doi.org/10.1016/j.egypro.2016.11.171 
  71. Sumathi, S., Kumar, L. A., & Surekha, P. (2015). Solar PV and wind energy conversion systems: an introduction to theory, modeling with MATLAB/SIMULINK, and the role of soft computing techniques (Vol. 1). Switzerland: Springer. https://doi.org/10.1007/978-3-319-14941-7_2 
  72. Sundareswaran, K., & Palani, S. (2015). Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Renewable Energy, 75, 308-317. https://doi.org/10.1016/j.renene.2014.09.044 
  73. Sundareswaran, K., Sankar, P., Nayak, P. S. R., Simon, S. P., & Palani, S. (2014). Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony. IEEE transactions on sustainable energy, 6(1), 198-209. https://doi.org/10.1109/tste.2014.2363521 
  74. Tajjour, S., & Chandel, S. S. (2023). A comprehensive review on sustainable energy management systems for optimal operation of future-generation of solar microgrids. Sustainable Energy Technologies and Assessments, 58, https://doi.org/10.1016/j.seta.2023.103377 
  75. Uddin, M., Mo, H., Dong, D., Elsawah, S., Zhu, J., & Guerrero, J. M. (2023). Microgrids: A review, outstanding issues and future trends. Energy Strategy Reviews, 49, https://doi.org/10.1016/j.esr.2023.101127 
  76. Ramana, V. V., & Jena, D. (2015, February). Maximum power point tracking of PV array under non-uniform irradiance using artificial neural network. In 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES) (pp. 1-5). IEEE. https://doi.org/10.1109/spices.2015.7091514 
  77. Xu, Q., Lin, P., & Blaabjerg, F. (2021). Power electronics converters for distributed generation. Smart Grid and Enabling Technologies, 81-112. https://doi.org/10.1002/9781119422464.ch3 
  78. Zainuri, M. A. A. M., Radzi, M. A. M., Che Soh, A., & Rahim, N. A. (2014). Development of adaptive perturb and observe‐fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter. IET Renewable Power Generation, 8(2), 183-194. https://doi.org/10.1049/iet-rpg.2012.0362